- Prenger, Kaitlyn;
- Sun, Yangunli;
- Ganeshan, Karthik;
- Al-Temimy, Ameer;
- Liang, Kun;
- Dun, Chaochao;
- Urban, Jeffrey J;
- Xiao, Jie;
- Petit, Tristan;
- van Duin, Adri CT;
- Jiang, De-en;
- Naguib, Michael
Two-dimensional transition-metal carbides and nitrides "MXenes" have demonstrated great potential as electrode materials for electrochemical energy storage systems. This is especially true for delaminated Ti3C2Tx, which already shows outstanding gravimetric and volumetric capacitance, with areal capacitance limited by thickness (only a few microns). However, the performance of multilayer Ti3C2Txhas been more modest. Here, we report on using metal cation (viz., Na+, K+, and Mg2+) pre-intercalated multilayer Ti3C2Txas electrodes for aqueous supercapacitors. These electrodes are scalable and amenable to roll-to-roll manufacturing, with adjustable areal loadings of 5.2 to 20.1 mg/cm2. K-Ti3C2Txexhibited the highest capacitances at different scan rates. A gravimetric capacitance comparable to that of delaminated MXene of up to 300 F/g was achieved for multilayer K-Ti3C2Txbut with an outstanding ultra-high areal capacitance of up to 5.7 F/cm2, which is 10-fold higher than the 0.5 F/cm2of delaminated MXene and exceeds the 4.0 F/cm2of microengineered MXene electrodes.