Background
Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins.Methods
A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012-2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches.Results
Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000.Conclusions
All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated.