Politics takes place in time and space–both the immutable physical space and the institutional space that politics can alter, but with much inertia. To express the effects of such limiting frames, I have developed a number of logical quantitative models. By "logical quantitative" I mean models that can be constructed without data input, on logical grounds, and then can be quantitatively tested. Here I try to make my approaches and results more understandable so as to enable others to apply this particular set of methods to further problems in political science and related fields. My topics can be divided into the following four categories:
a) The size of countries, assemblies and electoral districts matters for their functioning. Exactly how does country size affect the size of its legislative assembly, its foreign trade/GNP ratio, and the sizes of cities?
b) Sizes of populations, countries and defense budgets change over time–growing, declining, interacting. How do more universal patterns of growth and duration enter those empires and cabinet coalitions? How do social phenomena such as population explosion and hyperinflation proceed?
c) The number and size distribution of political parties is affected by institutional frameworks. According to which logical models?
d) Finally, conversion from people to representatives takes place in several forms. Popular votes translate into assembly seats for different parties. Populations of countries affect their seat shares in supranational assemblies. The conversion is usually less than proportional, under-representing the smaller parties, yet over-representating the smaller nations. What are the hidden rules of conversion?