- Tan, Yu-Ting;
- Ye, Lin;
- Xie, Fei;
- Beyer, Ashley I;
- Muench, Marcus O;
- Wang, Jiaming;
- Chen, Zhu;
- Liu, Han;
- Chen, Sai-Juan;
- Kan, Yuet Wai
Derivation of human hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) offers considerable promise for cell therapy, disease modeling, and drug screening. However, efficient derivation of functional iPSC-derived HSCs with in vivo engraftability and multilineage potential remains challenging. Here, we demonstrate a tractable approach for respecifying iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells (HSPCs) through transient expression of a single transcription factor, MLL-AF4 These induced HSPCs (iHSPCs) derived from iPSCs are able to fully reconstitute the human hematopoietic system in the recipient mice without myeloid bias. iHSPCs are long-term engraftable, but they are also prone to leukemic transformation during the long-term engraftment period. On the contrary, primary HSPCs with the same induction sustain the long-term engraftment without leukemic transformation. These findings demonstrate the feasibility of activating the HSC network in human iPSC-derived blood cells through expression of a single factor and suggest iHSPCs are more genomically instable than primary HSPCs, which merits further attention.