Fluorosed enamel is more porous and less mineralized, possibly related to altered amelogenin-modulated crystal growth. The purpose of this study was to examine the role of fluoride in interactions between amelogenin and apatite crystals. Recombinant human amelogenin (rh174) was bound to carbonated hydroxyapatite containing various amounts of fluoride, and analyzed by protein assay, SDS PAGE, and AFM. Interactions between rh174 and fluoride were assayed by isothermal titration calorimetry (ITC). The initial binding rate of rh174, as well as total amount of rh174 bound to fluoride-containing carbonated hydroxyapatite, was greater than that in the control carbonated hydroxyapatite. Fluoride in solution at physiologic (5.3 micromolar, or 0.1 ppm) concentrations showed no significant effect on binding, but higher fluoride levels significantly decreased protein binding. ITC showed no interactions between fluoride and rh174. These results suggest that fluoride incorporation into the crystal lattice alters the crystal surface to enhance amelogenin binding, with no direct interactions between fluoride and amelogenin.