- Kobayashi, Tamaki;
- Jain, Aarti;
- Liang, Li;
- Obiero, Joshua M;
- Hamapumbu, Harry;
- Stevenson, Jennifer C;
- Thuma, Philip E;
- Lupiya, James;
- Chaponda, Mike;
- Mulenga, Modest;
- Mamini, Edmore;
- Mharakurwa, Sungano;
- Gwanzura, Lovemore;
- Munyati, Shungu;
- Mutambu, Susan;
- Felgner, Philip;
- Davies, D Huw;
- Moss, William J;
- Tsuboi, Takafumi;
- White, Michael
- Editor(s): Blader, Ira J
Antibodies to Plasmodium falciparum are specific biomarkers that can be used to monitor parasite exposure over broader time frames than microscopy, rapid diagnostic tests, or molecular assays. Consequently, seroprevalence surveys can assist with monitoring the impact of malaria control interventions, particularly in the final stages of elimination, when parasite incidence is low. The protein array format to measure antibodies to diverse P. falciparum antigens requires only small sample volumes and is high throughput, permitting the monitoring of malaria transmission on large spatial and temporal scales. We expanded the use of a protein microarray to assess malaria transmission in settings beyond those with a low malaria incidence. Antibody responses in children and adults were profiled, using a P. falciparum protein microarray, through community-based surveys in three areas in Zambia and Zimbabwe at different stages of malaria control and elimination. These three epidemiological settings had distinct serological profiles reflective of their malaria transmission histories. While there was little correlation between transmission intensity and antibody signals (magnitude or breadth) in adults, there was a clear correlation in children younger than 5 years of age. Antibodies in adults appeared to be durable even in the absence of significant recent transmission, whereas antibodies in children provided a more accurate picture of recent levels of transmission intensity. Seroprevalence studies in children could provide a valuable marker of progress toward malaria elimination.IMPORTANCE As malaria approaches elimination in many areas of the world, monitoring the effect of control measures becomes more important but challenging. Low-level infections may go undetected by conventional tests that depend on parasitemia, particularly in immune individuals, who typically show no symptoms of malaria. In contrast, antibodies persist after parasitemia and may provide a more accurate picture of recent exposure. Only a few parasite antigens-mainly vaccine candidates-have been evaluated in seroepidemiological studies. We examined antibody responses to 500 different malaria proteins in blood samples collected through community-based surveillance from areas with low, medium, and high malaria transmission intensities. The breadth of the antibody responses in adults was broad in all three settings and was a poor correlate of recent exposure. In contrast, children represented a better sentinel population for monitoring recent malaria transmission. These data will help inform the use of multiplex serology for malaria surveillance.