Soil-borne wheat mosaic virus (SBWMV) causes a serious viral disease that can significantly reduce grain yield in winter wheat worldwide. Using resistant cultivars is the only feasible strategy to reduce the losses caused by SBWMV. To fine map the resistance gene Sbwm1, 205 wheat accessions was genotyped using wheat Infinium iSelect Beadchips with 90 K SNPs. Association analysis identified 35 SNPs in 12 wheat genes and one intergenic SNP in the Sbwm1 region that showed a significant association with SBWMV resistance. Those SNPs were converted into Kompetitive Allele-Specific Polymerase assays (KASP) and analyzed in two F6-derived recombinant inbred line (RIL) populations derived from the crosses between two resistant cultivars Wesley and Deliver and a susceptible line OK03825-5403-6. Linkage analysis mapped this gene on chromosome 5D at intervals of 5.1 cM and 3.4 cM in the two populations, respectively. The two flanking markers in both populations delimited the gene to a 620 kb region where 19 genes were annotated. Comparative analysis identified a syntenic region of 660 kb in Ae. tauschii with 18 annotated genes and a syntenic region in chromosome 1 of B. distachyon. The candidate region includes several disease resistance related genes and we identified a PTI1-like tyrosine-protein kinase 1 gene as a putative candidate gene for Sbwm1. The two flanking SNPs for Sbwm1 can effectively separate the resistant and susceptible lines in a new diversity panel of 159 wheat germplasm. The results from this study lay a solid foundation for the cloning, functional characterization and marker-assisted selection of Sbwm1.