INTRODUCTION: Urocortin 2 (Ucn2) is a 38-amino acid peptide of the corticotropin-releasing factor family. Intravenous (IV) delivery of an adeno-associated virus vector serotype 8 encoding Ucn2 (AAV8.Ucn2) increases insulin sensitivity and glucose disposal in mice with insulin resistance. OBJECTIVE: To determine the effects of Ucn2 on liver metabolome. METHODS: Six-week-old C57BL6 mice were divided into normal chow (CHOW)-fed and high fat diet (HFD)-fed groups. The animals received saline, AAV8 encoding no gene (AAV8.Empt) or AAV8.Ucn2 (2x1013 genome copy/kg, IV injection). Livers were isolated from CHOW-fed and HFD-fed mice and analyzed by untargeted metabolomics. Group differences were statistically analyzed. RESULTS: In CHOW-fed mice, AAV8.Ucn2 gene transfer (vs. saline) altered the metabolites in glycolysis, pentose phosphate, glycogen synthesis, glycogenolysis, and choline-folate-methionine signaling pathways. In addition, AAV8.Ucn2 gene transfer increased amino acids and peptides, which were associated with reduced protein synthesis. In insulin resistant (HFD-induced) mice, HFD (vs CHOW) altered 448 (112 increased and 336 decreased) metabolites and AAV8.Ucn2 altered 239 metabolites (124 increased and 115 reduced) in multiple pathways. There are 61 metabolites in 5 super pathways showed interactions between diet and AAV8.Ucn2 treatment. Among them, AAV8.Ucn2 gene transfer reversed HFD effects on 13 metabolites. Finally, plasma Ucn2 effects were determined using a 3-group comparison of HFD-fed mice that received AAV8.Ucn2, AAV.Empt or saline, where 18 metabolites that altered by HFD (15 increased and 3 decreased), but restored levels to that seen in CHOW-fed mice by increased plasma Ucn2. CONCLUSIONS: Metabolomics study revealed that AAV8.Ucn2 gene transfer, through increased plasma Ucn2, provided counter-HFD effects in restoring hepatic metabolites to normal levels, which could be the underlying mechanisms for Ucn2 effects on increasing glucose disposal and reducing insulin assistance.