- Nakamura, Kojiro;
- Kageyama, Shoichi;
- Ito, Takahiro;
- Hirao, Hirofumi;
- Kadono, Kentaro;
- Aziz, Antony;
- Dery, Kenneth J;
- Everly, Matthew J;
- Taura, Kojiro;
- Uemoto, Shinji;
- Farmer, Douglas G;
- Kaldas, Fady M;
- Busuttil, Ronald W;
- Kupiec-Weglinski, Jerzy W
Although modifications of gut microbiota with antibiotics (Abx) influence mouse skin and cardiac allografts, its role in orthotopic liver transplantation (OLT) remains unknown. We aimed to determine whether and how recipient Abx pretreatment may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. Mice (C57BL/6) with or without Abx treatment (10 days) were transplanted with allogeneic (BALB/c) cold-stored (18 hours) livers, followed by liver and blood sampling (6 hours). We divided 264 human OLT recipients on the basis of duration of pre-OLT Abx treatment into control (Abx-free/Abx <10 days; n = 108) and Abx treatment (Abx ≥10days; n = 156) groups; OLT biopsy (Bx) samples were collected 2 hours after OLT (n = 52). Abx in mice mitigated IRI-stressed OLT (IRI-OLT), decreased CCAAT/enhancer-binding protein homologous protein (CHOP) (endoplasmic reticulum [ER] stress), enhanced LC3B (autophagy), and inhibited inflammation, whereas it increased serum prostaglandin E2 (PGE2) and hepatic PGE2 receptor 4 (EP4) expression. PGE2 increased EP4, suppressed CHOP, and induced autophagosome formation in hepatocyte cultures in an EP4-dependent manner. An EP4 antagonist restored CHOP, suppressed LC3B, and recreated IRI-OLT. Remarkably, human recipients of Abx treatment plus OLT (Abx-OLT), despite severe pretransplantation clinical acuity, had higher EP4 and LC3B levels but lower CHOP levels, which coincided with improved hepatocellular function (serum aspartate aminotransferase/serum aspartate aminotransferase [sALT/sAST]) and a decreased incidence of early allograft dysfunction (EAD). Multivariate analysis identified "Abx-free/Abx <10 days" as a predictive factor of EAD. This study documents the benefits of Abx pretreatment in liver transplant recipients, identifies ER stress and autophagy regulation by the PGE2/EP4 axis as a homeostatic underpinning, and points to the microbiome as a therapeutic target in OLT.