While quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that Lactiplantibacillus plantarum, a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET. Interestingly, quinones both stimulate this metabolism as well as cause oxidative stress when extracellular electron acceptors are absent. We also found that quinone-producing, lactic acid bacteria species commonly enriched together with L. plantarum in food fermentations accelerate L. plantarum growth and medium acidification through a mainly quinone- and EET-dependent mechanism. Thus, our work provides evidence of quinone cross-feeding as a key ecological feature of anaerobic microbial habitats.