Background & aims
Lean patients with non-alcoholic fatty liver disease (NAFLD) represent 10-20% of the affected population and may have heterogeneous drivers of disease. We have recently proposed the evaluation of patients with lean NAFLD without visceral adiposity for rare monogenic drivers of disease. Here, we aimed to validate this framework in a well-characterised cohort of patients with biopsy-proven NAFLD by performing whole exome sequencing.Methods
This prospective study included 124 patients with biopsy-proven NAFLD and paired liver biopsies who underwent standardised research visits including advanced magnetic resonance imaging (MRI) assessment of liver fat and stiffness.Results
Six patients with lean NAFLD were identified and underwent whole exome sequencing. Two lean patients (33%) were identified to have monogenic disorders. The lean patients with monogenic disorders had similar age, and anthropometric and MRI characteristics to lean patients without a monogenic disorder. Patient 1 harbours a rare homozygous pathogenic mutation in ALDOB (aldolase B) and was diagnosed with hereditary fructose intolerance. Patient 2 harbours a rare heterozygous mutation in apolipoprotein B (APOB). The pathogenicity of this APOB variant (p.Val1856CysfsTer2) was further validated in the UK Biobank and associated with lower circulating APOB levels (beta = -0.51 g/L, 95% CI -0.65 to -0.36 g/L, p = 1.4 × 10-11) and higher liver fat on MRI (beta = +10.4%, 95% CI 4.3-16.5%, p = 8.8 × 10-4). Hence, patient 2 was diagnosed with heterozygous familial hypobetalipoproteinaemia.Conclusions
In this cohort of well-characterised patients with lean NAFLD without visceral adiposity, 33% (2/6) had rare monogenic drivers of disease, highlighting the importance of genomic analysis in this NAFLD subtype.Impact and implications
Although most people with non-alcoholic fatty liver disease (NAFLD) are overweight or obese, a subset are lean and may have unique genetic mutations that cause their fatty liver disease. We show that 33% of study participants with NAFLD who were lean harboured unique mutations that cause their fatty liver, and that these mutations had effects beyond the liver. This study demonstrates the value of genetic assessment of NAFLD in lean individuals to identify distinct subtypes of disease.