Custom-designed ligand-binding proteins represent a promising class of macromolecules with exciting applications toward the design of new enzymes or the engineering of antibodies and small-molecule recruited proteins for therapeutic interventions. However, several challenges remain in designing a protein sequence such that the binding site organization results in high affinity interaction with a bound ligand. Here, we study the dynamics of explicitly solvated designed proteins through all-atom molecular dynamics (MD) simulations to gain insight into the causes that lead to the low affinity or instability of most of these designs, despite the prediction of their success by the computational design methodology. Simulations ranging from 500 to 1000 ns per replicate were conducted on 37 designed protein variants encompassing two distinct folds and a range of ligand affinities, resulting in more than 180 μs of combined sampling. The simulations provide retrospective insights into the properties affecting ligand affinity that can prove useful in guiding further steps of design optimization. Features indicate that entropic components are particularly important for affinity, which are not easily incorporated in the empirical models often used in design protocols. Additionally, we demonstrate that the application of machine learning approaches built upon the output from the simulations can help discriminate between successful and failed binders, such that MD could act as a screening step in protein design, resulting in a more efficient process.