As urban areas grow and city populations expand, traffic congestion has become a significant problem, particularly in regions with substantial truck traffic. This study presents a coordinated freight routing system designed to optimize network utility and reduce congestion through personalized routing guidance and incentive mechanisms. The system customizes incentives and payments for individual drivers based on current traffic conditions and their specific routing preferences. Using a mixed logit model with a linear utility specification, the system captures drivers' route choice behaviors and decisions accurately. Participation is voluntary, ensuring most drivers receive a combined expected utility, including incentives, exceeding their anticipated utility under User Equilibrium (UE). This structure encourages drivers to follow suggested routes. Data collection on drivers' routing choices allows the system to update utility parameter estimates using a hierarchical Bayes estimator, ensuring routing suggestions remain relevant and effective. The system operates over defined intervals, where truck drivers submit their intended Origin-Destination (OD) pairs to a central coordinator. The coordinator assigns routes and payments, optimizing overall system costs and offering tailored incentives to maximize compliance. Experimental results on the Sioux Falls network validate the system's effectiveness, showing significant improvements in the objective function. This study highlights the potential of a coordinated routing system to enhance urban traffic efficiency by dynamically adjusting incentives based on drivers’ choice data and driver behavior.
View the NCST Project Webpage
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.