In recent years, theoretical and experimental interest in dark matter (DM) candidates have shifted focus from primarily Weakly-Interacting Massive Particles (WIMPs) to an entire suite of candidates with masses from the zeV-scale to the PeV-scale to 30 solar masses. One particular recent development has been searches for light dark matter (LDM), which is typically defined as candidates with masses in the range of keV to GeV. In searches for LDM, eV-scale and below detector thresholds are needed to detect the small amount of kinetic energy that are imparted to nuclei in a recoil. One such detector technology that can be applied to LDM searches is that of Transition-Edge Sensors (TESs). Operated at cryogenic temperatures, these sensors can achieve the required thresholds, depending on the optimization of the design.
In this thesis, I will motivate the evidence for DM and the various DM candidates beyond the WIMP. I will then detail the basics of TES characterization, expand and apply the concepts to an athermal phonon sensor--based Cryogenic PhotoDetector (CPD), and use this detector to a carry out a search for LDM at the surface. The resulting exclusion analysis provides the most stringent limits in DM-nucleon scattering cross section (comparing to contemporary searches) for a cryogenic detector for masses from 93 to 140 MeV, showing the promise of athermal phonon sensors in future LDM searches. Furthermore, unknown excess background signals are observed in this LDM search, for which I rule out various possible sources and motivate stress-related microfractures as an intriguing explanation. Finally, I shortly discuss the outlook of future searches for LDM for various detection channels beyond nuclear recoils.