Saccadic remapping, a presaccadic increase in neural activity when a saccade is about to bring an object into a neuron's receptive field, may be crucial for our perception of a stable world. Studies of perception and saccadic remapping, like ours, focus on the presaccadic acquisition of information from the saccade target, with no direct reference to underlying physiology. While information is known to be acquired prior to a saccade, it is unclear whether object-selective or feature-specific information is remapped. To test this, we performed a series of psychophysical experiments in which we presented a peripheral, nonfoveated face as a presaccadic target. The target face disappeared at saccade onset. After making a saccade to the location of the peripheral target face (which was no longer visible), subjects misperceived the expression of a subsequent, foveally presented neutral face as being repelled away from the peripheral presaccadic face target. This effect was similar to a sequential shape contrast or negative aftereffect but required a saccade, because covert attention was not sufficient to generate the illusion. Additional experiments further revealed that inverting the faces disrupted the illusion, suggesting that presaccadic remapping is object-selective and not based on low-level features. Our results demonstrate that saccadic remapping can be an object-selective process, spatially tuned to the target of the saccade and distinct from covert attention in the absence of a saccade.