We assess the feasibility and cost-effectiveness of renewable energy alternatives to Inga 3, a 4.8-GW hydropower project on the Congo River, to serve the energy needs of the host country, the Democratic Republic of Congo (DRC), and the main buyer, South Africa. To account for a key uncertainty in the literature regarding the additional economic impacts of managing variable wind and solar electricity, we built a spatially and temporally detailed power system investment model for South Africa. We find that a mix of wind, solar photovoltaics, and some natural gas is more cost-effective than Inga 3 to meet future demand except in scenarios with pessimistic assumptions about wind technology performance. If a low load growth forecast is used, including Inga 3 in the power mix results in higher system cost across all sensitivities. In our scenarios, the effect of Inga 3 deployment on South African power system cost ranges from an increase of ZAR 4300 (US$ 330) million annually to savings of ZAR 1600 (US$ 120) million annually by 2035. A cost overrun as low as 20% makes the Inga 3 scenarios more expensive in all sensitivity cases. Including time and cost overruns and losses in transmission from DRC to South Africa make Inga 3 an even less attractive investment. For DRC, through analysis of spatial datasets representing technical, physical, and environmental constraints, we find abundant renewable energy potential: 60 GW of solar photovoltaic and 0.6–2.3 GW of wind located close to transmission infrastructure have levelized costs less than US$ 0.07 per kWh, or the anticipated cost of Inga 3 to residential consumers.