- Wang, Hao;
- Wu, Jinpeng;
- Dolocan, Andrei;
- Li, Yutao;
- Lü, Xujie;
- Wu, Nan;
- Park, Kyusung;
- Xin, Sen;
- Lei, Ming;
- Yang, Wanli;
- Goodenough, John B
The layered oxide Na0.67CoO2 with Na+ occupying trigonal prismatic sites between CoO2 layers exhibits a remarkably high room temperature oxygen evolution reaction (OER) activity in alkaline solution. The high activity is attributed to an unusually short O-O separation that favors formation of peroxide ions by O--O- interactions followed by O2 evolution in preference to the conventional route through surface O-OH- species. The dependence of the onset potential on the pH of the alkaline solution was found to be consistent with the loss of H+ ions from the surface oxygen to provide surface O- that may either be attacked by solution OH- or react with another O-; a short O-O separation favors the latter route. The role of a strong hybridization of the O-2p and low-spin CoIII/CoIV π-bonding d states is also important; the OER on other CoIII/CoIV oxides is compared with that on Na0.67CoO2 as well as that on IrO2.