Objective
The purpose of this study was to develop a method for applying calibrated manual massage pressures by using commonly available, inexpensive sphygmomanometer parts and validate the use of this approach as a quantitative method of applying massage therapy to rodents.Methods
Massage pressures were monitored by using a modified neonatal blood pressure (BP) cuff attached to an aneroid gauge. Lightly anesthetized rats were stroked on the ventral abdomen for 5 minutes at pressures of 20 mm Hg and 40 mm Hg. Blood pressure was monitored noninvasively for 20 minutes following massage therapy at 5-minute intervals. Interexaminer reliability was assessed by applying 20 mm Hg and 40 mm Hg pressures to a digital scale in the presence or absence of the pressure gauge.Results
With the use of this method, we observed good interexaminer reliability, with intraclass coefficients of 0.989 versus 0.624 in blinded controls. In Long-Evans rats, systolic BP dropped by an average of 9.86% ± 0.27% following application of 40 mm Hg massage pressure. Similar effects were seen following 20 mm Hg pressure (6.52% ± 1.7%), although latency to effect was greater than at 40 mm Hg. Sprague-Dawley rats behaved similarly to Long-Evans rats. Low-frequency/high-frequency ratio, a widely-used index of autonomic tone in cardiovascular regulation, showed a significant increase within 5 minutes after 40 mm Hg massage pressure was applied.Conclusions
The calibrated massage method was shown to be a reproducible method for applying massage pressures in rodents and lowering BP.