We propose a novel analytical framework for evaluating the coverage
performance of a millimeter wave (mmWave) cellular network where idle user
equipments (UEs) act as relays. In this network, the base station (BS) adopts
either the direct mode to transmit to the destination UE, or the relay mode if
the direct mode fails, where the BS transmits to the relay UE and then the
relay UE transmits to the destination UE. To address the drastic rotational
movements of destination UEs in practice, we propose to adopt selection
combining at destination UEs. New expression is derived for the
signal-to-interference-plus-noise ratio (SINR) coverage probability of the
network. Using numerical results, we first demonstrate the accuracy of our new
expression. Then we show that ignoring spatial correlation, which has been
commonly adopted in the literature, leads to severe overestimation of the SINR
coverage probability. Furthermore, we show that introducing relays into a
mmWave cellular network vastly improves the coverage performance. In addition,
we show that the optimal BS density maximizing the SINR coverage probability
can be determined by using our analysis.