This study was conducted to evaluate the effect of red macroalgae Asparagopsis taxiformis supplementation for cattle on the shelf life of fresh beef steaks (longissimus dorsi). Three treatment groups (seven steers per treatment) included: 1) Control diet, 2) Control diet + 0.25% of macroalgae inclusion (low dose, LD), and 3) Control + 0.5% of macroalgae inclusion (high dose, HD). After the animals were harvested, the strip loins from all animals were collected and aged for 14 days at the meat lab of the University of California, Davis. Then the strip loins were cut into steaks, packaged, and placed on a retail display case for 6 days. During a retail display, instrumental color (L*, a*, and b*) of lean muscle and external fat surfaces were measured every 12 h. Bacterial counts for total aerobic mesophilic bacteria (AMB), aerobic psychrotrophic bacteria (APB), and lactic acid bacteria (LAB) were assessed on days 0, 3, and 6 of retail display. The thiobarbituric acid reactive substances (TBARS) analysis was conducted to measure the lipid oxidation and the pH was also assessed on days 0, 3, and 6. No interactive effect between treatments and time on the shelf life of steaks was observed. The HD red macroalgae supplement decreased (P < 0.05) the lightness (L*) of the surface muscle of the steaks, while the lightness of the external fat was not affected (P < 0.05) by treatments throughout the retail display. The external fat yellowness of the steaks was lower (P < 0.05) in LD and HD treatment groups compared with the control group. An increase (P < 0.05) in counts of AMB, APB, and LAB was observed on the steaks from the steers in the HD treatment group while steaks in Control and LD group had similar bacterial numbers throughout the retail display. The results indicated that the shelf life of steaks from cattle in LD group remained the same as that of the Control group, but the HD of A. taxiformis caused a darker color of steaks with higher microbial counts, which may lead to a shortened shelf life due to undesirable appearance and faster microbial spoilage.