The gut microbiome, the multispecies community of microbes that exists in the gastrointestinal tract, encodes several orders of magnitude more functional genes than the human genome. It also plays a pivotal role in human health, in part due to metabolism of environmental, dietary, and host-derived substrates, which produce bioactive metabolites. Perturbations to the composition and associated metabolic output of the gut microbiome have been associated with a number of chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD). Here, we review the rapidly evolving suite of next-generation techniques used for studying gut microbiome composition, functional gene content, and bioactive products and discuss relationships with the pathogenesis of NAFLD.