We show that linear generalizations of Rescorla-Wagner can perform Maximum Likelihood estimation of the parameters of all generative models for causal reasoning. Our approach involves augmenting variables to deal with conjunctions of causes, similar to the agumented model of Rescorla. Our results involve genericity assumptions on the distributions of causes. If these assumptions are violated, for example for the Cheng causal power theory, then we show that a linear Rescorla-Wagner can estimate the parameters of the model up to a nonlinear transformtion. Moreover, a nonlinear Rescorla-Wagner is able to estimate the parameters directly to within arbitrary accuracy. Previous results can be used to determine convergence and to estimate convergence rates

This paper analyses the Contrastive Divergence algorithm for learning statistical parameters. We relate the algorithm to the stochastic approximation literature. This enables us to specify conditions under which the algorithm is guaranteed to converge to the optimal solution (with probability 1). This includes necessary and sufficient conditions for the solution to be unbiased.