Titanium dioxide (TiO2) is widely used as a catalyst support due to its stability, tunable electronic properties, and surface oxygen vacancies, which are crucial for catalytic processes such as the reverse water-gas shift (RWGS) reaction. Reduced TiO2 surfaces undergo complex surface reconstructions that endow unique properties but are computationally challenging to describe. In this study, we utilize machine-learning interatomic potentials (MLIPs) integrated with an active-learning workflow to efficiently explore reduced rutile TiO2 surfaces. This approach enabled the prediction of a phase diagram as a function of oxygen chemical potential, revealing a variety of reconstructed phases, including a previously unreported subsurface shear plane structure. We further investigate the electronic properties of these surfaces and validate our results by comparing experimental and theoretical high-resolution transmission electron microscopy (HRTEM). Our findings provide new insights into how extreme surface reductions influence the structural and electronic properties of TiO2, with potential implications for catalyst design.