- Zegke, Markus;
- Zhang, Xiaobin;
- Pidchenko, Ivan;
- Hlina, Johann;
- Lord, Rianne;
- Purkis, Jamie;
- Nichol, Gary;
- Magnani, Nicola;
- Schreckenbach, Georg;
- Vitova, Tonya;
- Love, Jason;
- Arnold, Polly
The uranyl(vi) Pacman complex [(UO2)(py)(H2L)] A (L = polypyrrolic Schiff-base macrocycle) is reduced by Cp2Ti(η2-Me3SiC[triple bond, length as m-dash]CSiMe3) and [Cp2TiCl]2 to oxo-titanated uranyl(v) complexes [(py)(Cp2TiIIIOUO)(py)(H2L)] 1 and [(ClCp2TiIVOUO)(py)(H2L)] 2. Combination of ZrII and ZrIV synthons with A yields the first ZrIV-uranyl(v) complex, [(ClCp2ZrOUO)(py)(H2L)] 3. Similarly, combinations of Ae0 and AeII synthons (Ae = alkaline earth) afford the mono-oxo metalated uranyl(v) complexes [(py)2(ClMgOUO)(py)(H2L)] 4, [(py)2(thf)2(ICaOUO)(py) (H2L)] 5; the zinc complexes [(py)2(XZnOUO)(py)(H2L)] (X = Cl 6, I 7) are formed in a similar manner. In contrast, the direct reactions of Rb or Cs metal with A generate the first mono-rubidiated and mono-caesiated uranyl(v) complexes; monomeric [(py)3(RbOUO)(py)(H2L)] 8 and hexameric [(MOUO)(py)(H2L)]6 (M = Rb 8b or Cs 9). In these uranyl(v) complexes, the pyrrole N-H atoms show strengthened hydrogen-bonding interactions with the endo-oxos, classified computationally as moderate-strength hydrogen bonds. Computational DFT MO (density functional theory molecular orbital) and EDA (energy decomposition analysis), uranium M4 edge HR-XANES (High Energy Resolution X-ray Absorption Near Edge Structure) and 3d4f RIXS (Resonant Inelastic X-ray Scattering) have been used (the latter two for the first time for uranyl(v) in 7 (ZnI)) to compare the covalent character in the UV-O and O-M bonds and show the 5f orbitals in uranyl(vi) complex A are unexpectedly more delocalised than in the uranyl(v) 7 (ZnI) complex. The Oexo-Zn bonds have a larger covalent contribution compared to the Mg-Oexo/Ca-Oexo bonds, and more covalency is found in the U-Oexo bond in 7 (ZnI), in agreement with the calculations.