Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Elevated PSD-95 Blocks Ion-flux Independent LTD: A Potential New Role for PSD-95 in Synaptic Plasticity

Abstract

We recently demonstrated that NMDA receptors (NMDARs) are capable of ion-flux independent signaling through conformational change in the NMDAR intracellular domain resulting in long-term depression of synaptic transmission (LTD). Here we show that PSD-95 overexpression blocks agonist induced conformational movement in the NMDAR intracellular domain as well as LTD that is NMDAR-dependent and ion-flux independent. Interestingly, previous studies indicate that overexpressed PSD-95 does not block NMDAR-dependent LTD. These data support a model where ion-flux independent LTD is predominant in young animals, which have synapses with low amounts of PSD-95, whereas only ion flux dependent LTD occurs at more mature synapses, which have more PSD-95 that would block ion-flux independent LTD. These results may reconcile different findings regarding ion-flux independent LTD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View