Solving Complex Nanostructures With Ptychographic Atomic Electron Tomography
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Solving Complex Nanostructures With Ptychographic Atomic Electron Tomography

Creative Commons 'BY' version 4.0 license
Abstract

Transmission electron microscopy (TEM) is a potent technique for the determination of three-dimensional atomic scale structure of samples in structural biology and materials science. In structural biology, three-dimensional structures of proteins are routinely determined using phase-contrast single-particle cryo-electron microscopy from thousands of identical proteins, and reconstructions have reached atomic resolution for specific proteins. In materials science, three-dimensional atomic structures of complex nanomaterials have been determined using a combination of annular dark field (ADF) scanning transmission electron microscopic (STEM) tomography and subpixel localization of atomic peaks, in a method termed atomic electron tomography (AET). However, neither of these methods can determine the three-dimensional atomic structure of heterogeneous nanomaterials containing light elements. Here, we perform mixed-state electron ptychography from 34.5 million diffraction patterns to reconstruct a high-resolution tilt series of a double wall-carbon nanotube (DW-CNT), encapsulating a complex $\mathrm{ZrTe}$ sandwich structure. Class averaging of the resulting reconstructions and subpixel localization of the atomic peaks in the reconstructed volume reveals the complex three-dimensional atomic structure of the core-shell heterostructure with 17 picometer precision. From these measurements, we solve the full $\mathrm{Zr_{11}Te_{50}}$ structure, which contains a previously unobserved $\mathrm{ZrTe_{2}}$ phase in the core. The experimental realization of ptychographic atomic electron tomography (PAET) will allow for structural determination of a wide range of nanomaterials which are beam-sensitive or contain light elements.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View