Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Caenorhabditis elegans spermatocytes can segregate achiasmate homologous chromosomes apart at higher than random frequency during meiosis I

Abstract

Chromosome segregation errors during meiosis are the leading cause of aneuploidy. Faithful chromosome segregation during meiosis in most eukaryotes requires a crossover which provides a physical attachment holding homologs together in a "bivalent." Crossovers are critical for homologs to be properly aligned and partitioned in the first meiotic division. Without a crossover, individual homologs (univalents) might segregate randomly, resulting in aneuploid progeny. However, Caenorhabditis elegans zim-2 mutants, which have crossover defects on chromosome V, have fewer dead embryos than that expected from random segregation. This deviation from random segregation is more pronounced in zim-2 males than that in females. We found three phenomena that can explain this apparent discrepancy. First, we detected crossovers on chromosome V in both zim-2(tm574) oocytes and spermatocytes, suggesting a redundant mechanism to make up for the ZIM-2 loss. Second, after accounting for the background crossover frequency, spermatocytes produced significantly more euploid gametes than what would be expected from random segregation. Lastly, trisomy of chromosome V is viable and fertile. Together, these three phenomena allow zim-2(tm574) mutants with reduced crossovers on chromosome V to have more viable progeny. Furthermore, live imaging of meiosis in spo-11(me44) oocytes and spermatocytes, which exhibit crossover failure on all 6 chromosomes, showed 12 univalents segregating apart in roughly equal masses in a homology-independent manner, supporting the existence of a mechanism that segregates any 2 chromosomes apart.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View