Skip to main content
eScholarship
Open Access Publications from the University of California

Grounding Word Learning Across Situations

Abstract

Word learning models are typically evaluated as the problem of observing words together with sets of atomic objects and learn-ing an alignment between them. We use ADAM, a Python software platform for modeling grounded language acquisition, to evaluate a particular word learning model, Pursuit (Stevens, Gleitman, Trueswell, & Yang, 2017),under more realistic learning conditions (see e.g. Gleitman and Trueswell (2020) for review). In particular, we manipulate the degree of referential ambiguity and the salience of attentional cues available to the learner, and we present extensions to Pursuit which address the challenges of non-atomic meanings and exploiting attentional cues.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View