Skip to main content
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Particle-Tracking Proton Computed Tomography—Data Acquisition, Preprocessing, and Preconditioning


Proton CT (pCT) is a promising new imaging technique that can reconstruct relative stopping power (RSP) more accurately than x-ray CT in each cubic millimeter voxel of the patient. This, in turn, will result in better proton range accuracy and, therefore, smaller planned tumor volumes (PTV). The hardware description and some reconstructed images have previously been reported. In a series of two contributions, we focus on presenting the software algorithms that convert pCT detector data to the final reconstructed pCT images for application in proton treatment planning. There were several options on how to accomplish this, and we will describe our solutions at each stage of the data processing chain. In the first paper of this series, we present the data acquisition with the pCT tracking and energy-range detectors and how the data are preprocessed, including the conversion to the well-formatted track information from tracking data and water-equivalent path length from the data of a calibrated multi-stage energy-range detector. These preprocessed data are then used for the initial image formation with an FDK cone-beam CT algorithm. The output of data acquisition, preprocessing, and FDK reconstruction is presented along with illustrative imaging results for two phantoms, including a pediatric head phantom. The second paper in this series will demonstrate the use of iterative solvers in conjunction with the superiorization methodology to further improve the images resulting from the upfront FDK image reconstruction and the implementation of these algorithms on a hybrid CPU/GPU computer cluster.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View