Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Clinical Assessment of Deep Learning–based Super-Resolution for 3D Volumetric Brain MRI

Abstract

Artificial intelligence (AI)-based image enhancement has the potential to reduce scan times while improving signal-to-noise ratio (SNR) and maintaining spatial resolution. This study prospectively evaluated AI-based image enhancement in 32 consecutive patients undergoing clinical brain MRI. Standard-of-care (SOC) three-dimensional (3D) T1 precontrast, 3D T2 fluid-attenuated inversion recovery, and 3D T1 postcontrast sequences were performed along with 45% faster versions of these sequences using half the number of phase-encoding steps. Images from the faster sequences were processed by a Food and Drug Administration-cleared AI-based image enhancement software for resolution enhancement. Four board-certified neuroradiologists scored the SOC and AI-enhanced image series independently on a five-point Likert scale for image SNR, anatomic conspicuity, overall image quality, imaging artifacts, and diagnostic confidence. While interrater κ was low to fair, the AI-enhanced scans were noninferior for all metrics and actually demonstrated a qualitative SNR improvement. Quantitative analyses showed that the AI software restored the high spatial resolution of small structures, such as the septum pellucidum. In conclusion, AI-based software can achieve noninferior image quality for 3D brain MRI sequences with a 45% scan time reduction, potentially improving the patient experience and scanner efficiency without sacrificing diagnostic quality. Keywords: MR Imaging, CNS, Brain/Brain Stem, Reconstruction Algorithms © RSNA, 2022.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View