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Abstract of the Dissertation

Sequential Bayesian Regression for Multiple

Imputation and Conditional Editing

by

Robin Angela Jeffries

Doctor of Public Health

University of California, Los Angeles, 2013

Professor Robert E. Weiss, Chair

Analysts faced with errors in data apply editing rules to fix erroneous data. These edits are

deterministically assigned and edits may not be correct in all cases. This dissertation presents

a unified method to multiply impute missing data and multiply edit erroneous data using

a sequence of Bayesian regression models. The techniques used to multiply edit erroneous

data are an exact parallel for multiple imputation used to correct missing data. The models

presented allow for different data types subject to several error mechanisms.

This method is called Sequential Bayesian Regression for Multiple Imputation and Condi-

tional Editing (SyBRMICE) and creates multiple fully imputed and edited data sets. Desired

analyses are performed on each complete and consistently edited and imputed data set in-

dividually. Results from these analyses are combined using the same combining rules used

in multiple imputation. The resulting parameter estimates and intervals will then correctly

account for the errors incurred in both the data editing and imputation processes.

Development of SyBRMICE was motivated by data from Project Connect (PC). Project

Connect was an 8 year longitudinal intervention study aiming to reduce teen pregnancy

and STD rates in select middle and high schools in the Los Angeles area. Survey data was

collected annually to measure the effectiveness of the interventions. A paper survey was

administered to the students as a group in the classroom, and student responses have both

missing and erroneous data.
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The Project Connect survey was administered annually for five years. A subset of students

participated in multiple years resulting in repeated answers to the same question by the same

student. Data errors found in the PC survey data can be categorized as belonging to one

of several error types. If a variable such as gender that should remain constant over time is

observed to differ across surveys, this variable then is said to have an inconsistent longitudinal

response. If a variable, such as age or ever having sexual intercourse, that should increase

monotonically over time is observed to have a non-monotonic reporting pattern, this variable

is then said to have an inconsistent monotonic longitudinal response. Lastly if the responses

to two or more related variables give conflicting information, these variables are said to have

an inconsistent multiple response.

Models to stochastically edit each of the three types of erroneous data are presented.

The inconsistent repeated measures, inconsistent monotone longitudinal, and inconsistent

multivariate models are developed separately and then combined as steps in an example

of the larger unifying SyBRMICE procedure. The examples demonstrate the flexibility

and customizability of the SyBRMICE procedure. Results from an analysis performed on

the multiple complete and consistent data sets generated by the SyBRMICE procedure are

compared to results from the same analysis performed on a single deterministically-edited,

complete-case data set.
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To my nieces, nephews, and new little sister;

Never think that you are unable to achieve something because of where you come from or

where you are at in life. Whatever you have been through and will go through, you are

strong and will come out stronger. Find your goals, your passions and live them. Don’t

settle for mediocrity, and never be bored. To use a quote from a beloved novel,

Your life is yours alone, rise up and live it. (Goodkind, 2001)
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CHAPTER 1

Introduction to Project Connect

Project Connect’s official title was “Integrated, Multi-Level Interventions to Improve Ado-

lescent Health through the Prevention of Sexually Transmitted Diseases, Including HIV,

and Teen Pregnancy.” The primary aim of the study was to reduce teen pregnancy and

STD rates in adolescents by implementing multiple structural intervention plans. Structural

interventions are designed to intervene in the environment the people live in, not on the

person themselves. The study population consisted of students who attended select middle

and high schools in areas of Los Angeles with higher than the 2004 national average of teen

births and rates of Chlamydia.

1.1 Aims

Project Connect (PC) had a two-armed study design. Twelve high schools and 14 of their

corresponding feeder middle schools were equally split between the intervention and control

conditions. The baseline year was the 2005-06 academic year, with all interventions beginning

fall of the 2006-07 academic year. The research team designed and implemented structural

interventions for the parents, schools, community, and local health care providers.

The parent intervention included mailing pamphlets and DVDs home to the parents of

students attending intervention schools. These materials provided information for the par-

ents on how to keep track of their adolescent children after school, how to talk with them

about sensitive subjects including sex and pregnancy, and ways they could be more involved

in their child’s life.

The school intervention assisted the implementation and management of the campus based
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Condom Availability Program (CAP). These CAPs are mandated by the school district, but

implemented at various levels of compliance (DeRosa et al., 2012, Rafferty and Radosh,

1997). School level interventions also included health teacher training events designed to

boost the effectiveness of teachers in teaching health education topics.

The community intervention connected community services to students by creating a

resource guide containing details about after school activities in the community. These

guides were given to school staff for distribution to students. Project staff also facilitated

bringing the Los Angeles County Health Department’s mobile testing unit to intervention

high-school campuses without a school-based health center in an effort to increase STD

testing and awareness of services.

Provider level interventions included meetings with school administration and nurses to

discuss the need for reproductive health care services, and annual Link-over-Lunch meetings

to connect nurses and providers in conversations on better ways to serve youth. PC staff also

created a provider referral guide for the school nurses. This guide listed adolescent friendly

reproductive health care providers in the community to whom they could refer students for

follow-up reproductive health care.

1.2 Evaluation

To evaluate the effectiveness of the Project Connect (PC) intervention a self-report survey

was conducted annually during the spring semesters from 2005 to 2009 in the participating

schools. Students were asked to report on their attitudes, feelings and behaviors regarding

sensitive matters such as sexual behaviors and drug use. This dissertation uses data collected

from the first four years only.

Each Fall semester entire classrooms within both control and intervention schools were

selected using a random cluster sampling design. Every student within the selected classes

was invited to participate in the evaluation survey for that year. Students in the 6th , 8th , and

10th grade classes selected at baseline, and the 8th grade classes selected during the second

year, were specifically asked to participate for the duration of the study as longitudinal
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2005 2006 2007 2008

Non-responder 51.9% 49.5% 41.4% 46.2%

Refused consent 7.2% 6.7% 6.2% 4.9%

Consented 40.9% 43.8% 52.4% 49.0%

Table 1.1: Percent of invited students who did not return their consent form, who actively

refused consent and who consented to participate in the Project Connect survey.

cohort participants.

After the classrooms were selected, student roster data was obtained from the school

for all students enrolled in those classes. This roster data consisted of the student’s class

schedule and personal information including name, home address, gender, date of birth, and

ethnicity. This information was used to mail study information to their homes, to track

students in the longitudinal cohort across years and in some of the procedures discussed in

Section 3.5.1.

PC staff administered the self-report survey to students in the selected classrooms during

Spring of each school year. The paper survey was taken by the student during a single class

period. Since less than half of the invited students consented to participate, not all stu-

dents present at the time of data collection took the survey. Occasionally non-participating

students were disruptive to or attempted to collaborate with the participating students.

1.2.1 Sample Size

Active parental informed consent was required from every student. Students over 18 could

sign or refuse the consent form on their own. Table 1.1 gives consent rates during the first

four years. Parental consent forms were given out to every student in the selected classrooms.

Those that never returned their consent form were considered non-responders. Few, 7.2%,

6.7%, 6.2% and 4.9% refused consent in 2005, 2006, 2007, and 2008, respectively. These

students, or their parents, specifically chose not to participate in this study. All students

had the option to refuse to assent to the survey on the day of administration. Table 1.2
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2005 2006 2007 2008

Cross-Sectional (Single Survey) 6686 4461 4518 5188

Longitudinal (Repeated Measures) 3792 4630 4464 2834

Total 10478 9091 8982 8022

Table 1.2: Sample size by analysis cohort over time.

presents the number of surveys collected during the first four years. Multiple surveys were

collected on 5,998 students resulting in a total of 15,720 observations that can be used

in repeated measures analyses. An additional 20,853 surveys were collected from cross-

sectionally selected students for a total of 36,573 surveys on 26,851 students. Ages of the

students ranged from 11 to 18 years old, with a mean of 14.9 and standard deviation of 2.1.

1.2.2 Survey Instrument

The Project Connect survey is approximately 40 pages with 18 sections as listed in Table

1.3. This survey was based on the Youth Risk Behavior Surveillance (YRBS) (Centers for

Disease Control and Prevention, 2010), a national survey of adolescents. Reliability studies

for the YRBS survey have been done by Brener et al. (1995), Davey et al. (2001) and Troped

et al. (2007). Some individual questions and some sections are only asked of high school

students. The students marked their responses by filling in bubbles corresponding to the

chosen response option, or wrote text in the space provided as applicable. These forms were

processed by a Teleform scanning system that converted the image to an electronic data file.
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Section Number of Questions Section Name

A (24) About You

B (12) School Activities

C (12) Your School

D (2) Health Care

E (4) School-Based Health Center (SBHC) (HS only)

F (4) Your School Nurse

G (6) Condom Availability Program (CAP) (HS only)

H (13) Reproductive Health Care (HS only)

I (16) Sexual Activity

J (6) Plans about Sexual Activity

K (6) Parental Monitoring

L (8) Friends and Dating

M (6) Family Communication, Part 1

N (8) Family Communication, Part 2

O (6) Adults in Your Life

P (6) Other People’s Opinions

Q (5) Your Neighborhood

R (11) Your Health

Table 1.3: Sections of the Project Connect survey.
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1.3 Missing Data

When a survey question is not answered, it is considered missing data. The teleform scanning

software included a visual verification process to ensure that all marks on the paper survey

are correctly translated into a database. Therefore, missing data that occurs is due to the

student not answering the question.

Missing data can be problematic for an analyst. The more data that is missing the lower

the power will be to draw conclusions from the data. Imputation is a technique used to

fill in the missing values with data generated by a chosen process, so that the values are

no longer missing. Section 3.1 provides an introduction to missing data imputation and

discusses some imputation processes. Imputation is a now commonplace method of handling

missing data, but should be done in a thoughtful manner to account for the fact that the

imputation process adds data that was not there before.

1.4 Inconsistent Data

Self report surveys rely on the participant responding accurately. There is no consequence

to the student for not reporting accurately, nor for reporting inconsistently across years.

Inconsistent data is when the reported responses to multiple questions, or the same question

asked multiple times, provide conflicting information. When the reported responses do not

represent truth, that is, when the observed values do not equal the true values, these values

are erroneous. Inconsistent data is erroneous data, but not all data that are erroneous are

inconsistent. Inconsistent data can be identified using data cleaning procedures I discuss

later. Other terminology used for inconsistent data is that a variable is subject to a data

error, reporting error or mis-reporting.

Erroneous data can arise for a number of reasons that may not be distinguishable. Ques-

tions could be written in a confusing fashion or the participants may fail to recall past

events accurately. The participant may not take the survey seriously and may fill in arbi-

trary responses. In addition to the more, perhaps benign, reasons for mis-reporting, cognitive
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psychology research indicates that the participant weighs the true response to the question

against their feelings, and what they perceive to be the socially desirable response (Cannell

et al., 1981). Depending on factors such as, but not limited to age, religion, upbringing and

perceptions of peer beliefs, certain behaviors such as wearing a seat belt, drug use, and sexual

activity could be considered either socially desirable or undesirable. Participants may decide

to not answer a question or to answer in a manner that is less than truthful. The underlying

reasons for why people respond or choose not to respond is unknown. The combination of

missing and erroneous responses observed in the PC data set provide the motivation for this

dissertation.

Standard data cleaning processes for categorical variables include examining the variables

on a univariate basis. This is done to identify data entry errors such as observing a value

of 2 for a variable that should only contain 0 and 1 as response options. However, survey

questions do not exist in a vacuum. Many questions are associated with, or even directly

related to other questions. In this dissertation I frequently use the term response pattern.

This refers to the combination of responses to more than one question considered jointly.

For example a response pattern for a student who received an “A” grade in English class

and a “B” grade in Math would look like (A,B). Similarly a response pattern for a person

who reported being Male on two surveys would look like (M,M).

This is where the multivariate categorical nature of the Project Connect survey can make

finding errors in the data tricky. Often there is no indication that a response is in error when

the variable is examined univariately. Only when the response pattern to multiple questions

is examined is the error visible.

I consider three types of inconsistent responses; responses to a question that change over

time when they shouldn’t change, responses that change over time in an impossible way, and

responses to multiple questions that give conflicting or inconsistent information.
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1.4.1 Inconsistent Repeated Measurements

Inconsistent Repeated Measures (IRM) occur when the responses given to a single repeated

question asked over time are inconsistent, or otherwise provide conflicting information. I

distinguish between two different cases for IRM, those that are time fixed, and those with

a structured trend. Time fixed variables are ones where there is a strong prior belief or

physical restriction that there is only one true underlying fixed value that does not change

over time. Structured trend variables are ones that are allowed to change over time, but

only in a specified way such as monotone increasing or decreasing. Inconsistencies observed

in variables with a structured trend I call Inconsistent Monotone Longitudinal responses, or

IML.

Examples of Project Connect survey variables that are considered time fixed include gen-

der, birth date, number of elementary schools attended, and the students’/mothers’/fathers’

birthplace. Time fixed variables tend to be demographics and often are used as subject level

predictors and as stratifying variables. An example of an IRM would be when a student

reports being male for the first year, then female for the second and third year surveyed

(M,F,F). The challenge in addressing these errors comes in trying to assess which value is in

error. For a student who responds male for two years and female for two years (M,M,F,F),

how do you determine what the true gender of the student is?

Examples of Project Connect survey variables that are allowed to change over time include

age, grade, number of high schools attended, lifetime usage of health care facilities, ever

having intercourse, number of lifetime partners, and lifetime use of alcohol/tobacco or other

drugs. These variables are allowed to remain constant, or change over time but only in a

monotone increasing manner.

1.4.2 Inconsistent Monotone Longitudinal Responses

Some variables such as age or grade are expected to increase linearly over time. Binary

variables such as ever smoking a cigarette or ever having sexual intercourse are a 1-step

step-function where the true response starts off No (coded as 0), and stays No until it
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changes to Yes (coded as 1) and remains Yes for the remainder of the study. An example

of an Inconsistent Monotone Longitudinal response error would be if a student said No the

first year, Yes the second, and then switched back to No when surveyed a third time (0,1,0).

A procedure to correct these inconsistent repeated measures should be able to estimate the

true underlying value and it should also properly represent the uncertainty in that estimate.

Two detailed examples of inconsistent repeated measures are provided in Chapter 4, and an

inconsistent monotone longitudinal response is modeled in Chapter 7.

1.4.3 Inconsistent Multivariate Responses

Inconsistent multivariate (IMV) responses occur when responses to multiple variables that

should be consistent, aren’t, or otherwise give conflicting information. Bivariate examples

include when biologically implausible combinations of height (3’ 0”) and weight (399 lbs)

occur, or responding No to ever smoked but Yes to smoking in the past month.

Consider the questions that define a student as sexually experienced (I1:“Have you ever

had sexual intercourse”) and sexually active (I6:“Have you had sexual intercourse in the

past 3 months”). Both are Yes (1) / No (0) binary response questions. Examining these

variables univariately would only verify that no data entry errors, such as a response of 2, had

occurred. An inconsistent bivariate error is only discovered by looking at the combination

of responses between the experience question and active question.

A student who marks “No” they have never had sexual intercourse, and then subsequently

marks “Yes” they have had sex in the past 3 months provides an inconsistent response

pattern. This response combination is physically impossible, at least one of the two responses

to the variables in question is incorrect. This is an example of why there is a need to correct

the responses prior to analysis. If the student really is not sexually experienced, then they

would be incorrectly included in an analysis of active students. If they really are sexually

active, then they would be incorrectly excluded from an analysis of experienced students.

Many analyses (for example DeRosa et al., 2012, Ethier et al., 2011 and Habel et al., 2010)

using the Project Connect data set are done on selected subsets of students such as students
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who reported knowing about the School Based Health Center, students who reported ever

having sex, or those who reported having had sex in the past 3 months. If variables with

reporting errors are used in prediction models, it will result in a reduction in accuracy.

Data editing is any change made to the data from its original input form. Data are edited

to correct inconsistent or erroneous data by changing the responses from values that are

considered to be incorrect to values considered to be correct. A common method for editing

inconsistent data uses subject matter theory to decide what was “meant” to be reported and

changing one or more values accordingly.

As the number of interrelated variables increases so does the potential for erroneous

response patterns. Section 3.5.2 provides a detailed example of many conflicting answers in

conjunction with missing values. Information contained in related variables can be valuable

in any editing or imputation process to deal with inconsistent or missing data.

The rest of this dissertation is arranged as follows: Chapter 2 gives a description of the

Bayesian paradigm and defines terms and algorithms. Chapter 3 provides a review of the

imputation and editing processes, variable notation, and discusses current imputation and

editing procedures in the Project Connect data set. Models and subsequent editing and

imputation procedures are provided for two IRM examples in Chapter 4, an IML example

in Chapter 5 and an example of an IMV between two binary variables example in Chapter

6.

Chapter 7 wraps it all together in a unified model to multiply edit and multiply impute

multivariate missing and inconsistent data. Chapter 8 covers assumptions, limitations and

extensions of this work. Sections from the Project Connect codebook that provide full text

versions of questions discussed in this paper can be found in Appendix A.
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CHAPTER 2

Bayesian Analysis and Simulation Methods

This chapter provides a brief review of Bayesian inference and Markov chain Monte Carlo

methods to define notation and algorithms used in this dissertation. Full discussions of

these topics can be found in textbooks by Gelman et al. (2004), Robert and Casella (2005),

and Albert (2009). The purpose of using these algorithms is to make inference regarding a

parameter θ after observing data y. This is done by simulating a sample from the posterior

p(θ|y) and calculating summary statistics such as the mean, variance, and 95% intervals.

These summaries then are used to make inference regarding θ|y.

2.1 Bayes Theorem

Bayesian inference treats all parameters as random. Both the data y and parameter θ have

distributions. To make inference about the parameter θ given the data y you create a full

joint probability model p(θ, y). The model should be consistent with knowledge about the

underlying scientific problem and the data collection process (Gelman et al., 2004). Using

the rules of conditional probability and solving for p(θ|y) gives

p(θ|y)p(y) = p(θ, y) = p(θ)p(y|θ),
p(θ|y)p(y)

p(y)
=
p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

, (2.1)

p(θ|y) =
p(θ)p(y|θ)
p(y)

,

where p(θ|y) is the posterior distribution of the parameter θ conditional on the observed data

y, and p(y) is the marginal distribution of the data. The parameter θ has a prior distribution

p(θ), and p(y|θ) is the sampling distribution of y conditional on θ. The last line of (2.1)
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is known as Bayes’ Theorem. Since the denominator p(y) is a constant this is commonly

written

p(θ|y) ∝ p(θ)p(y|θ). (2.2)

This states that the posterior distribution of the parameter conditional on the observed data

is proportional to the product of the prior distribution and the sampling distribution.

When analyses are performed on data yi from subjects i = 1, . . . , n the data are repre-

sented as a vector y = (y1, . . . , yn)
′
. Since the desired inference is on the parameter θ|y, the

data distribution p(y|θ) can be viewed as a function of θ instead of y

p(y|θ) =
n∏
i=1

p(yi|θ) (2.3)

= L(θ|y),

where L(θ|y) is the likelihood of θ given y. Equation (2.3) assumes independence between

subjects. Bayes’ theorem (2.2) can then be written as the posterior is proportional to the

prior times the likelihood

p(θ|y) ∝ p(θ)L(y|θ). (2.4)

When the statistical model is complicated or high dimensional, algebraically calculating

summaries of the posterior density p(θ|y) can be difficult or numerically intractable. When

the posterior cannot be directly sampled from easily or at all, iterative sampling methods

such as Markov chain Monte Carlo (MCMC) methods can be used to generate a sample from

p(θ|y).

2.2 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) methods are iterative sampling algorithms which pro-

duce a sequence of values S = {θ(0), θ(1), . . . , θ(L)} that hold specific properties (Robert and

Casella, 2005). One of these properties is that the sequence S, or chain, converges to a

stationary distribution f . This convergence property allows for the generation of samples

from f . The stationary distribution f can be specified to be almost any distribution, in
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particular f can be chosen to be p(θ|y). The sequence S then converges to be a sample

from p(θ|y). I use three MCMC algorithms to generate Markov chains. These are the Gibbs

sampler (Geman and Geman 1984, Gelfand et al. 1990 and Gelfand and Smith 1990), the

Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings, 1970), and a combination

algorithm by Raghunathan et al. (2001).

2.2.1 Gibbs Sampling

Let θ = (θ1, . . . , θP ) be a P -vector with joint probability density p(θ) = p(θ1, . . . , θP ). The

joint conditional density p(θ|y) can be decomposed into its full conditional densities

p(θ1|θ2, . . . , θP , y),

p(θ2|θ1, θ3, . . . , θP , y),

... (2.5)

p(θp|θ−p, y),

... (2.6)

where

θ−p = (θ1, . . . , θp−1, θp+1, . . . , θP ), (2.7)

and where θ
(`)
p is the value sampled from density p(θp|θ(`)−p, y) at the `th iteration and

θ
(`)
−p = (θ

(`)
1 , . . . , θ

(`)
p−1, θ

(`−1)
p+1 , . . . , θ

(`−1)
P ). (2.8)

Algorithm 2.1 describes how Gibbs sampling works across iterations ` = 1, . . . , L, by sam-

pling one parameter θp at a time from the parameter’s full conditional density p(θp|θ(`−1)−p , y)

conditional on the current value of the other parameters. Sampling all θp, p = 1, . . . , P in

sequence constitutes P steps and one full iteration of the Gibbs sampling algorithm.

2.2.2 Metropolis-Hastings

If step p from equation (2.9) cannot be sampled from easily, a Metropolis-Hastings (M-H)

algorithm can be employed in place of the Gibbs step. The Metropolis-Hastings algorithm
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Algorithm 2.1 Gibbs Sampling Algorithm.

0. Choose a sensible starting value for θ
(0)
p , p = 1, . . . , P .

1. At iteration ` and step p, sample θ
(`)
p from its full conditional density conditional on

the current value of the other parameters

p(θp|θ(`−1)−p , y), (2.9)

where

θ
(`−1)
−p = (θ

(`)
1 , . . . , θ

(`)
p−1, θ

(`−1)
p+1 , . . . , θ

(`−1)
P ). (2.10)

2. Repeat Step 1 (Gibbs step) for p = 1, . . . , P .

3. Set θ(`) = (θ
(`)
1 , . . . , θ

(`)
P ).

4. Repeat Steps 1 and 3 for t = 1, . . . , T .

is an alternative method of sampling from a target distribution p(θp|θ(`−1)−p , y) by means of

generating candidate values from a proposal distribution q, and then either accepting or

rejecting the candidate values with acceptance probability ρ. Step p then is referred to as

an M-H step, or Metropolis-within-Gibbs sampling. The general structure of this method is

described in algorithm 2.2 and replaces the Gibbs step (step 1) of algorithm 2.1.

The random walk M-H algorithm is a popular choice for q. The candidate value is drawn

as

θ∗p = θ(`−1)p + ε, (2.11)

where ε is drawn from a symmetric proposal distribution q with mean zero and specified

variance Σ. The candidate value θ∗ then is in the neighborhood of the previous value in the

Markov chain. When q is symmetric the acceptance probability ρ is

ρ = min

{
1,

p(θ∗p|y)

p(θ
(`−1)
p |y)

}
. (2.12)

Employing a good proposal variance Σ can improve algorithm efficiency tremendously.
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Algorithm 2.2 Metropolis-Hastings Algorithm.

1. At iteration t generate a candidate value θ∗p from a proposal distribution q(θ∗p|θ
(`−1)
p ).

2. Set

θ(`)p =


θ∗p with probability ρ

θ
(`−1)
p with probability 1− ρ,

where the acceptance probability ρ is

ρ = min

{
1,

p(θ∗p|y)q(θ
(`−1)
p |θ∗p)

p(θ
(`−1)
p |y)q(θ∗p|θ

(`−1)
p )

}
.

A good choice for Σ is cΣ̃ where c is a variance scaling factor and Σ̃ is an estimate of

the posterior covariance matrix. This provides the algorithm with a measure of variance

and covariance between the variables. The variance scaling factor c is used to adjust the

magnitude of Σ̃ to achieve a suitable acceptance rate near 25% (Gelman et al., 2004).

2.2.3 Adaptive Metropolis-Hastings Sampling

Allowing the proposal variance Σ̃ to change during the simulation helps improve conver-

gence of the MCMC chains (Müller, 1991). I follow the recommended strategy for posterior

simulation outlined by Gelman et al. (2004, p. 307), in conjunction with re-estimation of the

proposal variance similar to Müller (1991). The simulation is split into 2 phases. In the first

phase the scaling factor c is allowed to change and the proposal variance Σ̃ is re-estimated D

times. Convergence of the MCMC chain is monitored during this phase. The second phase

fixes c and Σ̃ at their current values and continues for M2 iterations.

Figure 2.1 provides a graphical representation of this adaptive sampling procedure. The

parameters D, k, L0,M1, and M2 are tuning parameters that are adjusted to the specific

problem. The first phase is referred to as the burn-in phase. Samples from this phase are

discarded. During this phase the first L0 iterations are split into D blocks of equal length
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1 L0 L1

Phase 1
(burn−in)

m m m m

D blocks

Σ~ =
Σl=1

m θp
T(l)θp

(l)

m
− µpµp

T

Σ~ = Σ0

M1

Phase 2
(Sample Generating)

M2

Retained Samples

k k k k k k k k k

Figure 2.1: Diagram of the adaptive Metropolis-Hastings sampling algorithm.

m and indexed by d = 1, . . . , D. At l = 1, Σ̃ is initialized as Σ̃
0
, usually the identity matrix

of appropriate dimension. At the termination of each block when iteration l = dm, Σ̃ is

re-estimated using the previous m samples of θp

Σ̃ =

∑m
`=1 θ

(`)
p θ

′(`)
p

m
− µpµ

′

p, (2.13)

where µp is the posterior mean of θp. The MCMC chains used in the following block (d+ 1)

are initialized as the values from the last iteration of the previous block (d). The value of c

is initially set equal to 1, and is reset to 1 after each re-estimation of Σ̃. How it is used in

this adaptive phase is discussed next.

To achieve a suitable acceptance rate near 25% (Gelman et al., 2004) the variance scaling

factor c is modified at each iteration in the following manner as suggested by Müller (1991).

Let

ρ̃ =
t−1∑
t−20

ρl (2.14)

be the average acceptance probability over the 20 previous iterations. If ρ̃ > 0.5, c is increased

by 20%, c(`) = 1.2c(`−1), increasing the proposal variance, decreasing the probability of
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accepting a new candidate value. If ρ̃ < 0.1, c is reduced by 30%, c(l) = 0.7c(`−1) shrinking

the proposal variance, increasing the chance the candidate value will be accepted.

When t = L0, c and Σ̃ are fixed at their current values and an additional M1 iterations are

run which serve as a final burn-in. The end of this burn-in marks the beginning of the second

phase where the simulations are retained to build a sample from the target distribution. This

phase consists of M2 more iterations, assuming there is adequate mixing after M1 iterations.

To reduce the computational burden of post-simulation processing on extremely long chains

and to reduce the correlation between sequential retained simulations only draws from the

kth iteration are retained in the final posterior sample resulting in a final sample size of

ñ = M2

k
. This process is referred to as thinning. A recent discussion by Link and Eaton

(2012) notes that the precision of the posterior estimates from the unthinned chain are more

precise than those from the thinned chain. Christensen et al. (2010, p. 146) directly states

that unless the autocorrelation by lag 30 is still very high, thinning isn’t worthwhile. In this

dissertation I use a thin large enough such that the retained sample is mostly uncorrelated

and that will result in nice round final sample size of 1,000 or 5,000 for example.

2.3 Monitoring and Assessing Convergence

I take a heuristic approach to determining if the chain has converged by monitoring several

diagnostic measures suggested in Albert (2009) and provided in the coda package in R.

• Trace plots: When the trajectory of θ
(`)
p levels off such that the random oscillations

remain within bounds the chain is considered to have converged. This plot is also used

to ensure the chain is exploring the parameter space sufficiently.

• Acceptance rate: This is monitored throughout the burn-in period and at the end of

the second phase.

• Autocorrelation plots are inspected to determine the serial correlations of the samples,

which helps determine a thinning fraction 1/k.
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• Density plots are inspected to assess the smoothness of the density of the retained

sample. This helps to decide the length of the final chain.

• Gelman-Rubin-Brooks plots (Brooks and Gelman, 1998) are created when multiple

chains are run to monitor the shrink factor as the number of iterations increases. A

median shrink factor close to 1 is a positive indication of convergence.

2.4 Multiple Chains and Parallel Computing

Generating s multiple MCMC chains with diffuse starting values to estimate θp is advanta-

geous for several reasons. They can help ensure the entire parameter space is fully explored,

and that all chains converge to the same region. They can also cut down the number of

simulations needed per chain, one chain of T = 10, 000 can be broken down into s chains of

length T = 10, 000/s each. Unless otherwise specified I generate somewhat diffuse starting

values for the multiple MCMC chains by choosing sensible starting values for the first chain,

then adding random deviates to each value and using those as the starting values for the

subsequent chains. For example let the starting values for the first MCMC chain for θ be

(a1, a2) and let u1 and u2 be draws from a U(−1, 1) distribution. The starting values for the

second MCMC chain then would be (a1 + u1, a2 + u2).

Most MCMC algorithms can also benefit from parallel computing. Parallel computing,

is when the tasks assigned by the algorithm are split across several CPU’s (or computers).

Standard programming utilizes a single CPU and runs one chain at a time sequentially.

Parallel programming can assign the computation of s different chains to different CPU’s.

For example if you specify to use s = 4 chains and 4 CPU’s, each chain can be run on its

own CPU. If you ask for s = 8 chains on 4 CPU’s, each CPU will run 2 chains sequentially.

This does not guarantee that the computation time is divided by s, but it usually provides

a significant reduction.

The adaptive random walk M-H sampling algorithm lends itself reasonably well to par-

allel processing thanks to the snowfall package (Knaus, 2010) in R (R Core Team, 2012).
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snowfall is a user friendly wrapper for the SNOW (Simple Network of Workstations) package

(Tierney et al., 2011) for R that controls the workflow from the single R instance to multiple

CPUS’s. I walk through a very generic example of how a function that performs MCMC

sampling can be written as a parallel process. First I provide code for a single chain on a

single CPU, then extend this to multiple chains on multiple CPU’s running in parallel.

Code example The goal for this example is to sample from the posterior distribution

p(θ|y) by creating an MCMC chain using a function F(). This function takes data, priors,

and simulation parameters as inputs, and generates a single MCMC chain that estimates the

desired posterior distribution. For simplicity and to stay focused on the parallel processing

aspects of the example I do not go into the sampling algorithm details and just use F() to

sample from the desired posterior distribution.

Let parameter θ have prior density with mean mu and precision P. The simulation is run

for t=1100 iterations, with a burn-in of b = 100 and retaining every k = 5th iteration.

Additional arguments y provide data, and start gives starting values for the MCMC chain.

The function call is

single.chain <- F(t = 1100, b = 100, k = 5,

y = y, start = t0, prior = list(mean = mu, prec=P)).

The returned object single.chain is a vector of length ñ =(1100-100)/5= 200. To utilize

multiple chains and multiple processors, first each CPU has to be initialized and linked to

R (sfInit). Then all data, code and packages are loaded onto each CPU (SfExport). Once

the random number generator on each CPU is initialized separately (sfClusterSetupRNG),

the function F() can be called s times using sfLapply, the snowfall version of lapply.

# Define number of chains to use

s <- 4

# Create diffuse starting values

t1 <- matrix(rep(t0, s), ncol=s) + runif(n=length(t0)*s, min=-1, max=1)
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# Gather the CPU’s

sfInit(parallel=TRUE, cpus=4)

# Export data to all CPU’s

sfExport("y", "t1", "prior")

# Set random seed generator on each cluster

sfClusterSetupRNG()

# Apply the function F() to each of 1:s chains on each of 1 to 4 CPU’s

parallel.sim <- sfLapply(1:s, function(x){

F(t = 1100, b = 100, k = 5, start = t1[,x],

prior=list(mean=mu, prec=P)})

# Release the CPU’s

sfStop()

After each chain completes, the s resulting objects are returned as a list into the object

parallel.sim. Each of the 4 items in the list are single MCMC chains of length 200,

creating a total posterior sample size of ñ ∗ s = 1, 000. At this point each CPU that was

gathered to be used in this simulation needs to be released, or unlinked, from R using sfStop.

Figure 2.2 displays a selection of computation times between parallel and sequential sim-

ulations. The advantage of parallel processing is clear as early as 1,000 iterations. Running

1,000 iterations on each of 4 chains takes 18.4 minutes when using a single CPU and 15.6

minutes when using 4 CPU’s. This difference of about 3 minutes increases to a 10 minute

gain when running 2,000 simulations. Even this relatively small number of iterations takes

43.5 minutes for a single CPU and 33.4 minutes for 4 CPUs.
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Figure 2.2: Comparison of computation time between sequential and parallel processing

when using 4 chains on Intel Core i7 920 2.67GHz, 12G RAM.
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CHAPTER 3

Review of Editing and Imputation Procedures

This chapter discusses the concepts of editing and imputation, including historical treatment

and some current procedures commonly used in data editing. I describe five primary frame-

works used to impute missing data and some commonly used terms within the missing data

literature. I present a recent literature review on imputation and editing and then describe

some techniques for and advantages of combining the editing and imputation procedures.

Some notation used throughout the dissertation is introduced.

3.1 Imputation

Imputation is now a standard technique for handling missing data (Little and Rubin, 2002).

Rubin (1976) coined terms that classify the relationship between the missingness, which is

the process resulting in missing values, and the missing and observed values themselves. Let

y be a vector of data from a single subject that contains both missing and observed values.

Without loss of generality, the data vector y can be split into ymis and yobs, the sub-vectors

of y that are missing and observed respectively. Let X be any other fully observed variables

of interest. The possible mechanisms are

• Missing Completely at Random (MCAR): The probability that components of y are

missing is unrelated to any other observed data yobs, X or the unobserved ymis value.

This assumption can be partially tested (Little, 1988).

• Missing at Random (MAR): This is also called ignorable. The probability that y is

missing is dependent only on the observed values yobs and X, but not on the values of

the missing data itself.
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• Not Missing at Random (NMAR): The probability that y is missing is dependent on

ymis as well as possibly yobs and X.

Most standard imputation methods depend on the MAR assumption. Reiter and Raghu-

nathan (2007) suggest that the applicability of this assumption is related to the information

content of other related variables that can be used in an imputation process. Rancourt (2001)

describes the following five main frameworks used to impute data and which are useful for

understanding the mechanisms of how a value is imputed. Rancourt’s taxonomy is:

1. Experience-based : Experts are performing imputations based on their knowledge.

2. Distribution-based : Distributions are estimated and imputations are obtained from

them.

3. Model-based : A model is constructed, validated and used to produce values to impute.

4. Frequency-based : Under a response mechanism, values are imputed without using a

model.

5. Empirical-based (donor-based): A donor is found and its values are used for imputation.

Regardless of how the imputation is performed, single imputation does not account for the

error incurred by the imputation process itself. Treating the imputed values as if they were

known can lead to inappropriately smaller variances and therefore an erroneous increased

chance of significant findings.

3.1.1 Multiple Imputation

One common way of adjusting the analysis to include the error associated with filling in

missing values is multiple imputation (MI) (Little and Rubin, 2002). The idea, as graphi-

cally presented in Figure 3.1, is to perform an imputation procedure containing a random

component multiple times, creating multiple complete data sets. The desired estimate from

the analysis, such as a mean or regression coefficient, is then calculated on each data set
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Figure 3.1: Graphical representation of the multiple imputation process.

separately. The estimates are pooled using simple combining rules, also known as Rubin’s

Rules (Rubin, 1987) and are defined as follows.

Let δ be the parameter whose estimate we desire to obtain from an analysis. Given M

imputed data sets, M estimates of δ : (δ̂1, δ̂2, . . . , δ̂M) are generated and used to calculate

the following quantities.

• The overall estimate is the average of the individual point estimates

Q̂ =
1

M

M∑
m=1

δ̂m. (3.1)

• The within-imputation variance is the average of the individual variances

U =
1

M

M∑
m=1

V ar(δm). (3.2)

• The between-imputation variance is the variance of the estimates

B = V ar(δ̂1, δ̂2, . . . , δ̂M). (3.3)

• The total variance is

T = U + (1 +
1

M
)B, (3.4)

• and 95% intervals are calculated as

Q̂± 1.96 ∗
√
T . (3.5)

24



The resulting variance of the combined estimate then accounts for both the within and be-

tween data set variances. Reiter and Raghunathan (2007) give a review for when these rules

are valid and how they should be corrected under certain circumstances. The methodology

introduced in this dissertation is a situation where Rubin’s Rules are valid.

Raghunathan et al. (2001) argue that the best or most appropriate framework for per-

forming multiple imputation is under a fully Bayesian model where a model for the missing

data conditional on the observed data, prior distributions for all parameters, and a model

for the missing data mechanism are all explicitly defined. Rubin (1987) introduced the gen-

eral framework to generate multiple imputations for the missing values ymis given the data

generating model parameter θ.

1. Calculate the conditional posterior density P (θ|yobs) of the model parameters θ condi-

tional on the observed data.

2. Sample a value θ∗ from P (θ|yobs).

3. For each observation in ymis, y∗ is drawn from P (ymis|yobs, θ∗), the predictive distribu-

tion for the missing values given the sampled parameter values.

Steps 2-3 are repeated multiple times to create multiple imputations. This method has

been extended to impute missing values under various multivariate distributions (Rubin and

Schafer, 1990, Schafer, 1997).

One method to create multiple multivariate imputations for a complex model under a

Bayesian framework is called Sequential Regression Multivariate Imputation (SRMI) (Raghu-

nathan et al., 2001). This method presents a strategy to create multiple imputations by

drawing from the posterior predictive distribution of the missing data using a multivariate

regression model for the variables being imputed using all other variables as predictors. Im-

putations are done sequentially on a variable by variable basis, and is cyclical in that newly

imputed values overwrite the previous imputed values. The multiple imputation and edit-

ing procedures I introduce in this dissertation build off this technique, and the next section

introduces some notation and describes how SRMI works in detail.
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3.2 Notation

The notation introduced here assumes no repeated measures in the data set. Chapter 4

expands this notation to accommodate longitudinal data.

Let Yp, p = 1, . . . , P represent P variables that are subject to missing data. Then Y =

(Y1, . . . , YP )
′

is the full collection of YP variables, and Y−p = (Y1, . . . , Yp−1, Yp+1, . . . , YP )
′

is

the collection of all variables subject to missing data except Yp. Let yip be the ith subject’s

pth outcome, i = 1, . . . , n, yp = (y1p, . . . , ynp)
′
. Then yn×P = (y1, . . . ,yP ) is the data matrix

of all Y and y−p = (y1, . . . ,yp−1,yp+1, . . . ,yP )
′
is the n×(P−1) data matrix for all variables

except yp. Let X = (X1, . . . , XQ)
′

be the collection of all Q fully observed variables with

xiq the data from observation i on variable Yq. Then Xq = (x1q, . . . , xnq)
′

the vector of

data for variable Xq, and xn×Q = (x1, . . . ,xQ)
′

is the matrix of fully observed data with

x
′
i = (xi1, . . . , xiQ) in the ith row.

Let each vector Yp have an associated vector Mp of missing data indicators. For example

if Y2 has missing values then M2 = (M12, . . . ,Mn2)
′

where Mi2 = 1 if yi2 is missing and 0

otherwise. The count of missing observations for Yp is nmissp =
∑

iMip for all p = 1, . . . , P .

It follows that nobsp = n− nmissp is the count of data yip, i = 1, . . . , n, that is observed.

3.2.1 Sequential Regression Multivariate Imputation

The Sequential Regression Multivariate Imputation (SRMI) (Raghunathan et al., 2001) pro-

cedure defines a regression model gp for each variable Yp that is specific to the variable type

of Yp. For example a logistic regression for binary Yp, linear regression for continuous Yp or

Poisson log-linear model for a count variable Yp. In general

Yp ∼ gp(Y−p, X,θp), (3.6)

where θp is a vector of parameters specific to the density gp, which could include regression

coefficients and variance or dispersion parameters. The SRMI procedure uses only the ob-

served Yp cases to fit the models, in other words all rows where Mip = 0. A sample θ∗p is

drawn from the posterior density of θp conditional on the data used in fitting the regression
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model, and subsequently used to draw imputed values from the distribution of the missing

yip where Mip = 1 given the observed data and θ∗p.

Specifically at iteration t,

1. The observed values for yip are regressed on the most recently updated version of y
(`)
−p

which consists of the complete (observed and imputed from the current iteration) data

y
(`)
1 , . . . ,y

(`)
p−1, complete (observed and imputed from the previous iteration) data for

y
(`−1)
p+1 , . . . ,y

(`−1)
P , and the fully observed data X.

2. A sample value θ(`)
p is then drawn from the posterior density of θp conditional on

observed yip, and y
(`)
−p,

p(θp|yp,y(`)
1 , . . . ,y

(`)
p−1,y

(`−1)
p+1 , . . . ,y

(`−1)
P , X). (3.7)

3. For all nmisp observations with Mip = 1, imputed values y
I(`)
ip are drawn from

gp(y
I
ip|θ(`)

p , y
(`)
i1 , . . . , y

(`)
ip−1, y

(`−1)
ip+1 , . . . , y

(`−1)
iP ,xi), (3.8)

These drawn values are used to impute the missing yip to create a fully complete vector

y
(`)
p .

This algorithm cycles through all Y1, . . . , Yp variables in each iteration. Multiple imputations

can be created by retaining values from every kth iteration, or by using a single draw from

M parallel chains with diffuse starting values. These retained values can be merged back

into the original data set to create multiple complete data sets on which analysis can be

performed.

Raghunathan et al. (2001) point out that since the P conditional distributions from (3.8)

do not necessarily derive from a full joint distribution there is no theoretical guarantee

of convergence to a stationary distribution. However based on their test data sets and

subsequent research they do not feel this is an actual problem. SRMI has been available to

researchers since 1997 (last updated in 2011) in the computer software program IVEWARE

(stand alone and available for use in SAS) with no indication that this lack of confirmed
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theoretical convergence is an issue. A similar technique by van Buuren et al. (1999) called

Multiple Imputation using Chained Equations (MICE) also performs variable by variable

imputation using distinct conditional distributions. This procedure has been incorporated

into the main STATA distribution (Royston, 2004, Royston and White, 2011) and R (van

Buuren and Groothuis-Oudshoorn, 2011). Cyclical procedures such as SRMI and MICE are

useful techniques for performing multivariate MI on mixed data types.

Extensions to multiple imputation. The original MI process has been examined, mod-

ified and enhanced as the range of statistical problems have become increasingly complex

(Reiter and Raghunathan, 2007). Here I discuss enhancements that deal with missing data

in longitudinal studies, and some studies where imputation and editing are combined.

Many modifications to the MI framework are done under the auspice of an ignorable

missing data mechanism. It is not always appropriate to assume that missingness in a

longitudinal study is ignorable, for example missingness due to drop out. Drop out causes

all data from an individual after a certain point in time to be missing. This differs from

intermittent missingness where a participant is still in the study but does not contribute data

at a given time point. Without further study details, simply examining the missing data

pattern cannot differentiate between intermittent missingness that looks like dropout, and

direct dropout. Yang and Shoptaw (2005) describe an imputation framework called Multiple

Partial Imputation for longitudinal studies with intermittent missingness and dropout. This

is a two step process to impute the intermittent missingness first, and then deal with the

dropout separately.

Other techniques to handle missing data in longitudinal studies have been explored by

Yang et al. (2008), Demirtas and Hedeker (2007, 2008), and Daniels and Hogan (2007). Tang

et al. (2005) provides a comparison of imputation methods for longitudinal studies. Several

review papers including Reiter and Raghunathan (2007), Raghunathan (2004), Horton and

Kleinman (2007) have summarized the missing data concepts, techniques and software to

date. Yucel (2011) provides a recent review of the state of multiple imputation software

programs that exist as stand alone software or have been incorporated into a variety of
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statistical software packages. Practitioners interested in multiple imputation have many

options to choose from; the same can not be said about editing procedures.

3.3 Editing

Data editing is done to correct outlying values, values considered to be in error, and incon-

sistent combinations of responses. Edits to the data are also called recodes, the terms “edit”

and “recode” are used interchangeably. These recodes typically have the form of a series of

logical constraints and deterministic if-then type rules.

Historically edits were performed by people manually going over each record and checking

for internal consistency in accordance with edit rules (Herzog et al., 2007). These rules could

involve one or more of the following outlier detection methods. A univariate distributional

analysis where values outside a specific range are considered implausible (monthly income of

$1 million or more) or impossible (observing a value of 2 when the response options are only

0 or 1), or a bivariate distributional analysis where the responses of two continuous variables

are plotted against each other and outlying points are identified. The outlier detection

method most appropriate for multivariate categorical data is a multivariate pattern that the

science or experts dictate is impossible or highly unlikely and therefore could be erroneous

(15 year old reporting having a 30 year old child).

Computers have aided this editing process by increasing the speed and consistency of

these recodes, removing the burden on the individual performing the edit checks, but the

software to perform these recodes can be difficult to write (Herzog et al., 2007). Large scale

surveys can have hundreds of these recode rules that require an iterative editing process to

ensure all rules are satisfied, and still may require final personal review and manual editing.

Fellegi and Holt (1976) developed a system that would ensure all records satisfy all recode

rules in one pass of the data through the editing process. Their work comes out of Operations

Research and gained greater notice by business statisticians and econometricians rather than

Biostatisticians in Public Health. de Waal and Coutinho (2005) provide a review of the

Fellegi-Holt method and compare it to three other algorithms to locate and edit errors in

29



business surveys.

3.4 Combining Edit & Imputation

Several programs exist that combine various single edit and single imputation (E&I) pro-

cedures. The annual Conference of European Statisticians (2011) held a work session on

Statistical Data Editing. Statisticians working on government level censuses and surveys

met to discuss new developments in their countries E&I systems. However these programs

are very large scale and designed for use on the governmental level and are not easily available

to the individual researcher.

Examples of these programs include the Structural Programs for Economic Editing and

Referrals (SPEER) (Winkler and Draper, 1996) and DISCRETE (Winkler and Petkunas,

1997) editing systems used by the US Census Bureau, the Generalized Edit and Imputation

System (GEIS/Banaff) used by Statistics Canada (Kovar et al., 1991), and the program

Data Imputation Editing System - Italian Software (DIESIS) (Bruni et al., 2002) used by

the Italian government. These programs are designed to handle very large scale surveys,

require a decent amount of manpower to implement, and are rather general and must be

configured for each different survey (Herzog et al., 2007, Ghosh-Dastidar and Schafer, 2003).

The EUREDIT (2003) project compared many editing and imputation procedures on the

quality of the imputed values, but did not specifically examine these programs for their ability

to impute values satisfying prespecified editing rules, nor their ability to incorporate the

additional uncertainty introduced by the editing and imputation processes themselves. They

specifically state that “evaluation of MI versions of the EUREDIT imputation methods would

require a large-scale simulation exercise. . .” which was outside the scope of the EUREDIT

project.

Limited publications exist which develop methods of combining editing and imputation

procedures that account for the additional variance introduced by the E&I procedure itself.

Ghosh-Dastidar and Schafer (2003) combined multiple editing with multiple imputation

using a Bayesian approach that can be used for continuous data with intermittent errors.
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Figure 3.2: Graphical representation of the multiple editing process.

Winkler (2003) introduced a method to edit inconsistent categorical data by first blanking out

(making the values missing) all inconsistent responses, then imputing all missing values using

a generalized hot-deck imputation method that imputes values which satisfy pre-specified

editing constraints. This method is based on the Fellegi and Holt theory of editing and so

requires some knowledge of operations research to implement. Cole et al. (2006) provide

a multiple imputation for measurement error (MIME) correction, but commentator White

(2006) pointed out this method is only appropriate when the true response values for a subset

of observations is available.

The common theme with multiple editing processes is that the edited values are no longer

deterministically assigned, but are a result of a regression prediction or sampled from a

posterior distribution. Figure 3.2 shows that the process of multiple editing is the same

concept as multiple imputation. No work has been identified that uses the concept of multiple

editing in a longitudinal study.

3.4.1 Expansion of Notation to Accommodate Inconsistent Data

To accomplish my goal of introducing a procedure that combines stochastic editing processes

and multiple imputation, some notation needs to be expanded to include editing indicators.

First I expand the definition of Yp to include variables that are subject to missing and/or

erroneous data.
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Let Ek = (E1k, . . . , Enk)
′

be a vector of editing indicators for the kth known edit where

Eik = 1 if record i is to be edited and Eik = 0 otherwise. While there is a one to one

connection between Yp and Mp, a single editing indicator Ek could represent a multivariate

edit and thus correspond to an inconsistent pair of, say, Yk and Yk+1.

To better explain how the missing and editing indicators work with the data, consider

three binary variables Y4, Y5, Y6 with valid values of (0, 1), where Y4 and Y5 contain some

missing values (NA). In addition, variable Y4 has some invalid cases with values of y4 = 2,

and the combination (Y5, Y6) = (1, 1) is inconsistent and is to be edited. Two edit indicators

are defined as E1 = 1{y4 = 2} and E2 = 1{y5 = 1∩ y6 = 1}. An example first four rows of a

matrix containing (Y4, Y5, Y6) and its associated imputation and editing vectors of indicators

might look like



i y4 y5 y6 M4 M5 E1 E2

1 0 NA 0 0 1 0 0

2 1 0 1 0 0 0 0

3 NA 1 1 1 0 0 1

4 2 0 0 0 0 1 0

.

In the first row, yi5 is missing (y15 = NA) and so M51 = 1. Similarly y34 is missing, so

M34 = 1. Also E41 = 1 because y44 = 2, and E32 = 1 because the pair (y35, y36) = (1, 1).

Further let nerrk =
∑

iEk be the number of observations to be edited under edit rule k.

3.5 Data Editing and Imputation in the Project Connect data

Project Connect used an experience-based editing and imputation framework, executed as

a series of if-then logical statements to perform edits and imputations on the survey data

set. Inconsistent multivariable responses were edited each year as the data was collected,

inconsistent repeated measures were edited after the final year of data collection. Editing a

single year without regards to data collected on the same person in other years may result in

inconsistencies across years. I discuss some of the general recode rules currently implemented

in the PC data set and go into detail regarding some specific edits from the Sexual Activity
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section (Section I).

3.5.1 Current Editing and Imputation Rules

Here are a few examples of the currently implemented editing and imputation rules. The

full text of questions is given in Appendix A.

1. Demographics: Gender (A1), Birth date (A2,A3), Ethnicity (A7). Rules include single

yearly imputations and longitudinal edits.

(a) Yearly single imputations: If gender, birth date or ethnicity are missing during a

single year, impute them with the school roster data.

(b) Longitudinal edits: If the value of gender changes across years, use the value that

is most often reported (majority rules) as the true value. Roster data is used as

a tie breaker.

2. School Based Health Center (SBHC). Question E1 (KNOW SBHC) asks if the student

knows of an SBHC on their high school campus. Question E2 (EVER BEEN) asks if the

student has been to the SBHC. Question E3 (WHY) asks what the student has visited the

SBHC for, and has 12 parts (a-l) that list activities such as “Immunizations” or “Birth

Control”. Question E4 (WHY NOT) has 8 parts, asking reasons why the student has not

visited the SBHC, and contains several options such as “I didn’t feel comfortable”, and

“I thought I’d have to pay”.

(a) If the school doesn’t have an SBHC then change E1-E3 to missing.

(b) If there are conflicts (some Yes, some No) among KNOW SBHC, EVER BEEN and

WHY variables then change all of them to missing.

(c) If KNOW SBHC & EVER BEEN are missing, and WHY are all No then change WHY to

missing.

(d) If KNOW SBHC is not missing and EVER BEEN is missing and WHY is all No responses

then change EVER BEEN to No.
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(e) If KNOW SBHC is Yes and EVER BEEN is No and WHY has some Yes responses then

change EVER BEEN to Yes.

(f) If KNOW SBHC and EVER BEEN are missing and WHY has some Yes then change KNOW

SBHC and EVER BEEN to Yes.

3. Condom Availability Program (CAP): Question G1 (KNOW) asks about student aware-

ness of the CAP. Question G2 (WHO) asks if specific people give out condoms on campus.

These two questions have a “Don’t Know” response option. Question G3 (UTIL) asks

about condom acquisition from the CAP. Question G4 (AMOUNT) asks how many times

the student has gotten condoms from the CAP in the past month.

(a) CAP Recode Step 1: Impute Missing

i. Change Don’t Know to No for KNOW and all of WHO.

ii. If KNOW is No or Don’t know and skipped the entire rest of the section, then

change all WHO, and UTIL to No.

iii. If KNOW is missing but the student answered the rest of the section, and if

they said Yes to at least one of WHO change KNOW to Yes.

(b) CAP Recode Step 2: Edit Inconsistencies

i. If they said Yes to 2 or more of WHO then change KNOW to Yes.

ii. If they said No to KNOW and Yes to UTIL then change UTIL to No.

3.5.2 Sexual Activity Data Editing and Imputation

Section I contains the questions that measure sexual risk behaviors. Missing data and incon-

sistencies in responses within this section need to be dealt with in a consistent and logical

manner. A primary goal of the intervention was to postpone the time to first sexual in-

tercourse. This was measured by examining the change across years in the proportion of

students who reported ever having sexual intercourse, and by measuring the change in re-

ported age of sexual onset. Any recode that alters variables involved in these measurements

34



has the potential to change the perceived effect of the intervention.

Currently the error patterns in this section are resolved by a series of order-specific deter-

ministic recode rules. A total of 26 edit rules were applied to this section and are listed in

Appendix Table A.5. The first 14 recode rules address inconsistencies and missing data in

the first five questions, I1-I5. Briefly, I1 asks about lifetime sexual experience, I2-I3 ask

the month and year of when the student first had sexual intercourse. Question I4 asks the

age the student was at first sex, and I5 asks about the number of lifetime partners.

One way to visualize the complexity of these rules is depicted in Figure 3.3. The green

hexagons represent the if conditions. The arrow from the green hexagon to a white box

represents the and condition, and the arrow from the white box leads to a scroll that contains

the editing decision (then). Red scrolls are recodes that change I1 directly, blue scrolls are

edits that change other variables. The missing data codes used are M =Missing, S ==I have

never had sex, K ==Don’t Know.

Let’s walk through recode #1:If I1 is “M” and I2 through I5 are all “S” then change

I1 to No. Recode #1 can be traced as follows: The green hexagon at the top of the page

that says I1=M represents If I1 is “M”. Following the arrow to the left to the white box

that contains (1) I2-I5 are all S represents the and I2 through I5 are all “S” portion

of the recode rule. The (1) indicates that it is Recode Rule #1. Following the arrow down

to the red scroll that says Change I1 to no instructs you to then change I1 to No for

observations where both of these conditions are satisfied.

Ten percent of observations during the first three years and 12% during the fourth year

were affected by at least one edit in the sexual activity section. The main contributor is

edit rule #25 which edits inconsistencies between having sex in the past 3 months and

consistency in condom use during sex in the past three months. Edit rules such as these

generate additional missing data that could impact analyses.

35



 I1 = M (1) I2-I5 are 

all S 

Change       
I1 to No 

(4) I2-I5 are a 

combination of 

valid and M 

Change      

I1 to Yes 

(5, 6) I2-I5 are a 

combination of 

valid and S 
Change 

I1 – I5  

to M 

I1 = No 
(11) Any of      

I2-I5 are S 

I1 =Yes 

(7) At least 3 of 

I2-I5 are valid 

with others M 

(8) I2-I5 are all 

M 

Change     

I1 to Yes 

(9) I2-I5 are all S 

or M with only 

one valid answer 

Change that 

valid answer 

to S 

(10) I2-I5 are all 

combinations of 

S and M 

Change    

I2-I5 to S 

(12) I16 = S (13) I8 = S (14) I70 = Yes 

Change I16 

to M 

Change I8     

to M 

Change I70 

to No 

(2) I2-I5 are all 

missing, with at 

least 1 S 

Change      

I1 to No & 

I2-I5 to S 

(3) I2-I5 are 

all M and   

I16 = S 

 

Figure 3.3: A graphical representation of the first 14 recode rules found in Appendix Table

A.5. These edits revolve around the primary question of ever having sexual intercourse (I1).

Special missing data codes: M=Missing, S=I have never had sex.
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3.6 Conclusion

The major assumption when using a set of deterministic recode rules to change data is

that the edits are considered to be 100% correct for every affected observation. These rules

are usually generated on the basis of what the researcher assumes the participant “should

have” or “meant to” report using their scientific knowledge of the situation and the observed

reported values. Data gained by singly imputing missing data or data changed by using

a deterministic editing process are treated in follow up analysis as if the data are without

error.

I distinguish between survey reported values yi and the underlying truth Zi. Deterministic

editing assigns a particular value to Zi as a function of observed data yi with probability 1.

But often these rules are not thought to be perfect and we do not expect that the assumed

Zi is always correct due to mis-reporting, random errors or active lying in a subset of the

population.

I develop Bayesian multiple editing methods to correct certain types of errors that occur in

the Project Connect data set. Using the Bayesian paradigm allows for good scientific prior

knowledge about the problem to be included in these models and encoded in the editing

rules. Edited values are drawn from the posterior distribution of the correct data given the

clearly incorrect responses. These methods correctly propagate error from the editing and

imputation procedures into the final analysis and conclusions. These procedures result in

multiply imputed and multiply edited data sets that can then be used for analyses.
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CHAPTER 4

Modeling Time Fixed Inconsistent Repeated Measures

This chapter introduces a model and subsequent imputation and editing procedures for the

case of inconsistent repeated measurements (IRM) of a time-fixed binary variable. There is

a model for the subject’s underlying true value, zi, and a model for the reporting process,

yij, i = 1, . . . , n, j = 1, . . . ,mj. The unknown latent variable zi remains constant across time

and has two possible values, either 0 or 1.

I use a Bayesian hierarchical latent variable model to estimate the underlying true value zi

given reported values yij. This model incorporates prior knowledge about the association of

predictors with the latent characteristic. The probability that zi is 1 is modeled with a logistic

regression on a set of q predictors, wi. The reporting model for yij given zi is a mixture

model where the regression parameters differ based on the value of zi. The probability that

yij is 1 is modeled with a logistic regression on a second set of h predictors, xij, which are

associated with how a student reports the characteristic.

The models are fit with the Markov chain Monte Carlo (MCMC) simulation techniques

described in Chapter 2.2. Draws from the resulting posterior sample are used in a multiple

imputation and editing procedure to impute the missing and correct the inconsistent values.

This chapter details the IRM model, posterior density calculations and sampling algorithm.

I apply the IRM model twice, to model their true gender and to model participant’s true

birthplace.
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4.1 Model Specification

The underlying true value of the characteristic of interest, zi, is modeled as a Bernoulli

random variable with probability λi. The logit of λi is assumed to be a linear combination

of q subject level predictors, wi = (wi1, . . . , wiq)
′

and corresponding q-vector of regression

coefficients, γ; logit(λi) = wi
′
γ, where the logit function is logit(p) = log[p/(1− p)], and the

inverse function logit−1(x) ≡ expit(x) ≡ exp(x)/(1 + exp(x)).

The reported value of yij is modeled as a Bernoulli random variable with probability πij,

which is regressed on h fully observed response level predictors xij = (xij1, . . . , xijh)
′

also

using a logit link. A mixture model allows the regression coefficients to differ depending on

the value of zi. If zi = 1 then logit(πij) = xij
′
α, else when zi = 0, logit(πij) = xij

′
β. Both α

and β are vectors of length l. The full hierarchical Bayesian model is

zi|λi ∼ Bernoulli(λi)

logit(λi) = w
′

iγ

yij|πij ∼ Bernoulli(πij) (4.1)

logit(πij) = xij
′
αzi + xij

′
β(1− zi),

for i = 1, . . . , n, and j = 1, . . . ,mi. Independent multivariate normal priors p(α), p(β), and

p(γ) with known mean and variance parameters are assigned to the regression coefficients

α, β, and γ respectively. Since label switching can be a problem in mixture models, the

prior distributions on α and β are truncated such that the intercept coefficients α1 ≥ 0 and

β1 ≤ 0

α ∼ Np(mα,Vα)I{α1 ≥ 0}

β ∼ Np(mβ,Vβ)I{β1 ≤ 0} (4.2)

γ ∼ Nq(mγ,Vγ).

Bayesian inference about the latent variable zi and unknown parameters α, β, and γ is

made via sampling from the posterior densities of the unknown parameters conditional on

the data.

39



4.1.1 Full Conditional Posterior Density Calculations

The form of the full joint posterior distribution p(α,β,γ, zi, yij|xij,wi) is non-trivial and

cannot be directly sampled from. Instead, posterior samples of the latent variable zi and

unknown regression coefficients α, β, and γ are sampled from their full conditional posterior

densities using an MCMC sampling algorithm. The full joint posterior distribution can be

decomposed into the full conditionals

p(α|W,X,Y,Z,β,γ),

p(β|W,X,Y,Z,α,γ),

p(zi|xij,wi,yi,α,β,γ), i = 1, . . . , n,

p(γ|W,X,Y,Z,α,β),

where yi = (yi1, . . . , yimi
)
′

is the vector of mi responses for subject i with Y = (y1, . . . ,yn)
′
.

The other variables are defined as X = (x11, . . . ,xnmi
)
′

is the N x l matrix of known

covariates for all N =
∑

imi observations, Z = (z1, . . . , zn)
′

is the n-vector of underlying

true values for all n subjects, and W = (w1, . . . ,wn)
′

is the n x q matrix of predictors for

zi. The probability density function for θ ∼ Np(mθ,Vθ) has the form

p(θ) = (2π)−
p
2 |Vθ|−

1
2 exp

[
− 1

2
(θ −mθ)

′
V−1θ (θ −mθ)

]
.

Taking a log and dropping constants results in a functional form

log p(θ) ∝ −1

2
(θ −mθ)

′
V−1θ (θ −mθ). (4.3)

This form is used in further posterior density calculations.

Derivation of p(α|X,Z,Y) and p(β|X,Z,Y). Since γ affects α and β indirectly through

Z, the conditional posterior densities

p(α|Y,Z,X) ∝ L(Y|α,X,Z)p(α)

and

p(β|Y,Z,X) ∝ L(Y|β,X,Z)p(β)
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do not directly depend on γ. The sampling density of the response data yij is

f(yij|πij) = π
yij
ij (1− πij)1−yij , yij ∈ 0, 1 (4.4)

for i = 1, . . . , n, j = 1, . . . ,mi. Let

ηij = xij
′
αzi + xij

′
β(1− zi)

then

πij = expit(ηij).

Taking the log and dropping constants, equation (4.4) can be written as

log f(yij|ηij) = yijηij − log[1 + exp(ηij)].

Specifically,

log f(yij|xij,α, zi)|zi=1 = yijxij
′
α− log(1 + exij

′
α), (4.5)

and

log f(yij|xij,β, zi)|zi=0 = yijxij
′
β − log(1 + exij

′
β). (4.6)

The full log conditional posterior distributions for the regression coefficients α and β then

are

log p(α|X,Z,Y) ∝ logL(Y|α,X,Z) + log p(α)

∝
∑
ij|zi=1

f(yij|α,xij, zi)−
1

2
(α−mα)

′
V−1α (α−mα), (4.7)

and

log p(β|X,Z,Y) ∝ logL(Y|β,X,Z) + log p(β)

∝
∑
ij|zi=0

f(yij|β,xij, zi)−
1

2
(β −mβ)

′
V−1β (β −mβ). (4.8)
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Derivation of p(zi|xij,wi,yi,α,β,γ). The conditional sampling density of zi|λi is

f(zi|λi) = λzii (1− λi)1−zi zi ∈ 0, 1, (4.9)

for i = 1, . . . , n. Letting λi = expit(wi
′
γ) and taking the log, this can be written as

log f(zi|γ,wi) = ziwi
′
γ − log(1 + ewi

′
γ), (4.10)

for i = 1, . . . , n. The conditional posterior of the underlying variable zi depends on all other

parameters and data from subject i. Let k1i and k0i be the log-posterior of zi evaluated at

zi = 1 and zi = 0 respectively

k1i = log f(zi|γ,wi)|zi=1 +
∑
j

log f(yij|α,xij, zi)|zi=1, (4.11)

k0i = log f(zi|γ,wi)|zi=0 +
∑
j

log f(yij|β,xij, zi)|zi=0. (4.12)

The full conditional posterior distribution of zi for i = 1, . . . , n is Bernoulli

zi|wi,xij,α,β, yij ∼ Bernoulli
( exp(k1i)

exp(k1i) + exp(k0i)

)
. (4.13)

Derivation of p(γ|Z,W). The log full conditional posterior density of the unknown vector

γ depends on Z and W

p(γ|Z,W) ∝ L(Z|γ,W)p(γ).

Taking logs and dropping constants this can be written as

log p(γ|Z,W) ∝ logL(Z|γ,W) + log p(γ)

∝
∑
i

log f(zi|γ,wi)−
1

2
(γ −mγ)

′
V−1γ (γ −mγ). (4.14)

All log full conditional posterior densities have now been defined. Next I discuss how the

posterior samples are generated.

4.1.2 Sampling Algorithm

To sample from the posteriors p(α|X,Z,Y), p(β|X,Z,Y), and p(γ|Z,W), I use an adaptive

random walk Metropolis-within-Gibbs sampling algorithm with multivariate normal proposal
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distributions. A Gibbs step is used to sample zi directly from equation (4.13). The sampling

order is γ, zi,i=1,...,n, α and then β. To reduce computational burden during simulation, the

acceptance probability from equation (2.12) is re-written as

ρθ = min

[
1, exp

(
logL(y|θ∗) + log p(θ∗)− logL(y|θ(`−1)) + log p(θ(`−1))

)]
, (4.15)

where θ = α, β, and γ each individually and θ∗ is the candidate value. To incorporate

the constraints placed on the intercepts α1 and β1, p(α
∗) = 0 if I{α1 < 0} and p(β∗) = 0 if

I{β1 > 0}. Each of the four components of ρθ are calculated once then updated as necessary.

This means that if the acceptance criteria u ∼ U(0, 1) < ρθ is met, set

θ(`) = θ∗, (4.16a)

logL(Y|θ(`)) = logL(Y|θ∗), and (4.16b)

log p(θ(`)) = log p(θ∗). (4.16c)

Otherwise retain the previous values

θ(`) = θ(`−1), (4.17a)

logL(y|θ(`)) = logL(y|θ(`−1)), and (4.17b)

log p(θ(`)) = log p(θ(`−1)). (4.17c)

Lastly, define the average probability that a student is female as

λ̄(`) =
1

n

n∑
i=1

λ
(`)
i , (4.18)

where λ(`) is the `th sampled value for λi. The value of λ̄(`) then is the average probability

of z = 1 at iteration `.

4.1.3 Editing and Imputation

This section discusses the process of jointly editing the inconsistent reports and imputing the

missing data in a stochastic fashion. Introduce Zi, student i’s true value of the characteristic.

To correctly account for the error generated in these processes, Z
(m)
i , m = 1, . . . ,M imputed
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and edited vectors are created. The data sets containing these updated vectors are called

MEMI’s (Multiple Edit Multiple Imputation) (Ghosh-Dastidar and Schafer, 2003). I propose

two variations on a joint imputation and editing process for repeated measures with missing

or inconsistent data.

The first editing and imputation procedure is a full edit, where all records are edited

regardless of whether an IRM was observed. Using the editing indicator notation where

Ei = 1 if an IRM was observed and 0 otherwise, this would set Ei = 1 for all i = 1, . . . , n

students. The second type of edit is a limited edit which only changes records that are

observed to be inconsistent.

Full edit. There is a non-zero probability that a student could consistently mis-report

the characteristic in question on all surveys. This acknowledges that someone with Zi = 0

could report yij = 1 all mi times they took the survey, or report 1 twice and not respond

to the question the last time. This would argue that everyone in the sample should be

edited (Ei = 1 for all n), not just those observed to report inconsistently. This method sets

Z
(`)
i = z

(`)
i for all i = 1, . . . , n, which is equivalent to retaining the drawn values from the

Gibbs sampling step in equation (4.13).

Limited edit. Under the limited edit only participants who provide multiple years of

data are candidates for the limited editing, a single response such as 0 or 1 is not edited.

To implement the limited edit, Zi is set as the reported value yi1 from the first reported

survey if the student consistently reported across all surveys (Ei = 0). For students with

inconsistent reports, (Ei = 1), a draw from the posterior sample of zi is used for Zi.

Imputation If the student did not report the characteristic of interest on any survey they

participated in, the missing data indicator Mi is equal to 1 for student i and 0 otherwise.

For students with Mi = 1, Z
(`)
i is drawn as a random Bernoulli variable with probability

expit{w′
iγ

(`)} if full covariate data was provided, and
∑ñ

t=1 λ̄
(`) if not.
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In summary the full edit is

Z
(`)
i



= z
(`)
i if Mi = 0

∼ Bernoulli(expit{w′
iγ

(`)})

for all yij missing (Mi = 1) and wi observed

∼ Bernoulli(
∑ñ

ell=1 λ̄
(`)) if (Mi = 1)

and not all covariate information is available

, (4.19)

and the limited edit is

Z
(`)
i



= yij for consistent reports (Ei = 0)

= z
(`)
i for inconsistent reports(Ei = 1)

∼ Bernoulli(expit{w′
iγ

(`)})

for all yij missing (Mi = 1) and wi observed

∼ Bernoulli(
∑ñ

`=1 λ̄
(`)) if (Mi = 1)

and not all covariate information is available.

(4.20)

I present two examples of IRM’s, one editing gender and one editing birthplace.

4.2 Example 1: Analysis of Gender

Gender is one of the most important covariates in behavioral intervention studies as inter-

ventions can have different effects on males and females (DeRosa et al., 2012). Inconsistent

responses on gender across surveys for the same student could confound how gender modifies

the effect of an intervention on a particular outcome. A value of gender can be determined

if gender is asked only once, and that single value is used by the analyst for all time points,

provided everyone can be assumed to answer truthfully. The Project Connect study asked

participants their gender on each survey without predetermined response verification. This

opened the door to inconsistent reporting, but also to the possibility of fixing the errors

through statistical analysis. I apply the IRM model to the repeated self-reported gender to

45



model each student’s true gender, but first explore the probability of a student being female

given their response pattern using a simpler probability model with no covariates.

Since students participated in 1 to 4 surveys, there are 30 distinct response patterns of

Male (M) and Female (F). For students who participated all 4 years there are 16 possible

response patterns: MMMM, MMMF, MMFM, MFMM, FMMM, MMFF, MFMF, MFFM,

FMMF, FMFM, FFMM, MFFF, FMFF, FFMF, FFFM, and FFFF. Students with 3 surveys

have 8 response patterns: MMM, MMF, MFM, FMM, MFF, FMF, FFM, FFF, and students

with 2 surveys have 4 response patterns: MM, MF, FM, and FF.

Consider a student who participates for all four years. If they report being male on all

four surveys, then one could believe this student truly is a male. Similarly for an FFFF

response pattern it is extremely likely this person is female. But what about someone with

only three years of data? Does MMF have the same strength as MMMF in determining

the underlying true gender of the student in the presence of conflicting responses? Most

likely this person is male, but there is a small chance they are female. Depending on the

probability of a student mis-reporting their gender, the probability they are female varies

from one response pattern to another, especially if the probability of mis-reporting differs

by gender.

Let p(F ) be the prior probability of a student being female where p(M) = 1− p(F ) is the

probability of being male. Let πM and πF be the mis-reporting probability for males and

females respectively. Assuming reports are independent across surveys given πM or πF , and

using Bayes’ formula, the probability of a student being female given a report of nm M’s and

nf F’s is

p(F |data) =
p(F )πnm

F (1− πF )nf

p(F )πnm
F (1− πF )nf + p(M)π

nf

M (1− πM)nm
. (4.21)

Consider a student who reported being male once, and female on each of 1 to 3 additional

surveys: MF, MFF, and MFFF. Using equation (4.21), the probability this student is female

using varying levels of πM and πF under each of the three possible IRM cases are plotted in

Figure 4.1.

Figure 4.1(a) shows that when the probability that female mis-reports their gender is high

46



πF = .2 and the probability of a male mis-reporting their gender is low πM = .001 the chance

that a student reporting MF is Female is .994. This is intuitive in that if a male is less likely

to lie than a female, and we observe an inconsistent report, there is a higher probability that

the report came from a female. If males and females are equally likely to lie, and there is

only one report on each, then it is equally likely a report of MF came from a female as from

a male.

Figures 4.1(b) and 4.1(c) show that an increase in reporting consistency however plays

a much larger role than the probability of mis-reporting. Figure 4.1(c) specifically shows

that even if both females and males lie 20% of the time there is more than a .9 probability

that a report of MFFF came from a female. Only when πF < .005 and πM = .2 does the

probability that this report comes from a female drops below .5 given the values for πM and

πF .

This probability model demonstrates the roles that the number of consistent reports and

probability of mis-reporting play in the overall posterior probability of the student being

female. However, this model does not include information on gender or the reporting of

gender that can be found in other covariates measured on the student. To properly account

for the amount and consistency of the self-report data on gender using information contained

in other variables, the IRM model can be used to model students’ true gender and perform

imputation and editing in a stochastic manner.
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Figure 4.1: Probability of being female given for various values of πM and πF .
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4.2.1 Data

The data used for this example comes from N = 36, 327 observations on n = 26, 606 students

who are not missing data on selected predictors. I use subject level binary indicator variables

for carrying weapons (WEAPi) and fighting (FIGHTi) as predictors in the model for the

probability λi = p(zi = 1) that student i is a female. As these are variables that are asked

each year, as a practical matter I have aggregated the responses across surveys by setting

WEAPi = 1 if student i reported that they carried a weapon at least one day (in the 30

days prior) on any survey, and FIGHTi = 1 if student i reported engaging in at least one

fight in the past year on any survey. Since this becomes an indicator of ever fighting or

ever carrying a weapon (within the specified time frames), non-responses are imputed as 0.

While this deterministic imputation may seem to be contrary to the methodology presented

in this dissertation, it is performed here to simplify the example and it is believed to be fairly

accurate. Weapons, fighting plus an intercept make up the subject level covariates wi = (1,

WEAPi, FIGHTi)
′
.

I use one response level covariate, AGEij, to model the probability πij = P (yij = 1) of

a student reporting being female given their true gender. The predictor AGEij is centered

by subtracting the mean and standardized by dividing by the standard deviation calculated

across all observations. This variable plus an intercept make up the response level covariates

xij = (1, AGEij)
′
.

4.2.2 Prior Distributions and Simulation Settings

Vague but proper normal priors are placed on all regression coefficients. The prior means

for the reporting model mα and mβ are set at (5, 0)
′

and (−5, 0)
′

respectively. This reflects

the prior belief that there is a expit(5) = 0.993 probability a student will correctly report

their gender, and that a priori age has no expected effect on how a student reports their

gender. The prior mean for the true gender model mγ = (0,−1,−0.5)
′

is set to reflect the

prior belief that females have a lower likelihood of carrying weapons or fighting (Centers for

Disease Control and Prevention, 2010).
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The prior variances for the regression coefficients are set in a fashion similar to the prior

variances for Zellner g-priors (Zellner, 1983). The prior variances are

vα = vβ = n−10 ∗N(X
′
X)−1 (4.22a)

and

vγ = n−11 ∗ n(W
′
W )−1, (4.22b)

where N is the total number of observations, n the total number of unique students, and

n0 and n1 are scaling factors. These scaling factors determine the strength of the prior; the

larger the factor the stronger the prior information is. For example n0 = 100 is equivalent

to adding 100 additional observations worth of information, creating an informative prior

distribution on the response level model. The prior covariance matrices are

vα = vβ =


Intercept AGE

0.2000 −0.0004

0.2004

, (4.23)

and

vγ =



Intercept WEAP FIGHT

0.603 0.976 0.071

2.690 −0.551

1.104

, (4.24)

where n0 = n1 = 5.

Simulation settings. The model for inconsistent repeated measures of gender is fit with

Markov chain Monte Carlo (MCMC) simulation techniques using s = 5 parallel chains.

Phase 1 of each chain consists of D = 2 blocks of m = 1, 000 iterations each and is discarded

as the burn-in. Phase 2 simulation is run for M2 = 40, 000 additional iterations per chain,

retaining every k = 40th iteration, resulting in a final sample size of ñ = 5, 000.
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4.2.3 Results

Convergence Diagnostics. Figure 4.2 shows trace plots on the left and density plots

on the right for samples generated in Phase 2 from each of the 5 chains. The trace plots

demonstrate the adequate mixing and convergence of the multiple chains. The density plots

also indicate that the chains have converged to the same smooth distribution. The thick

grey line plots the prior distribution for that parameter. Figure 4.3 displays the cumulative

acceptance rates for each vector of regression coefficients α, β, and γ per chain. The ac-

ceptance rate per chain is calculated per block as the number of times the candidate value

was accepted up to iteration ` divided `. The final acceptance rate for a parameter vector

is calculated as the average value across chains at iteration ` and displayed in the upper

right corner of Figure 4.3 and are 0.21, 0.30, and 0.18 for α, β, and γ respectively. The

autocorrelation plots on the left in Figure 4.4 indicate that using a thin of k = 40 resulted in

an approximately uncorrelated posterior samples, and the Gelman-Rubin-Brooks diagnostic

plots on the right show that for all regression parameters the shrink factor is close to 1. This

is also a good indication of convergence.

Posterior Summary. Table 4.1 gives summary statistics for the Inconsistent Repeated

Measures gender model including posterior means and standard deviations for the regression

coefficients and the average probability that a student is female. To aid interpretation, re-

gression coefficients have been transformed into Odds Ratios (OR= exp(θ)), with intercepts

transformed into probabilities (p=logit−1(θ)) and displayed in italics, both with correspond-

ing 95% posterior intervals.

A student who reported carrying a weapon in the 30 days prior to the survey date on any

survey has .38 (95%PI .35, .42) lower odds of being female than one not carrying a weapon

during that time frame. Students reporting fighting at least once in the year prior to the

survey date have .76 (.72, .81) lower odds of being female than a student who did not engage

in any fighting. The average probability a student in this sample is female is .544 (.543,

.546). The probability of reporting being female is .995 (.993, .997) for females and .003

(.002, .005) for males at the sample mean age of 14.9. For both genders, as age increases
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Parameter Interpretation Mean SD OR/p 2.5% 97.5% p(θ > 0)

λ̄ p(Female) 0.544 0.0007 - 0.543 0.546 -

γ1 Intercept =0.279 0.0230 0.431 0.420 0.442 <0.001

γ2 Carried a weapon 30d =0.964 0.0489 0.381 0.347 0.420 <0.001

γ3 Fought past 12mo =0.275 0.0293 0.760 0.718 0.805 <0.001

Female

α1 Intercept 5.323 0.1738 0.995 0.993 0.997 1.000

α2 Age (standardized) =0.347 0.2001 0.707 0.475 1.041 0.038

Male

β1 Intercept =5.816 0.2380 0.003 0.002 0.005 <0.001

β2 Age (standardized) =0.329 0.2103 0.720 0.479 1.083 0.058

Table 4.1: Summary of the posterior distribution for the gender model parameters. Odds

Ratios (OR) or probabilities (p in italics) with corresponding 95% posterior intervals are

included.

the odds of reporting being female decreases. Figure 4.5 plots the probability that a student

will correctly report their gender decreases as age increases for females, but increases as age

increases for males. The lines are calculated as

p(a) = expit(5.3225− .3470 ∗ a),

p(a) = 1− expit(−5.8157− .3288 ∗ a)

for females and males respectively, where a is the standardized age. How these posterior

parameter estimates are used in an editing and imputation procedure is discussed next.

MEMI Results. Using equation (4.20), data are edited and imputed M = 20 times.

To confirm the editing worked in a manner consistent with logic and comparable to the

deterministic editing rules, Table 4.2 displays the count of males and females in the data

set after editing and imputing, ordered by the number of surveys the student took mi and

the number of times they reported being female #F . Results are displayed for limited edit

MEMI #1, #7, and #20, and full edit #3, #9, and #10 to illustrate the variation in editing
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results. The last two columns display counts of males and females averaged across all 20

MEMI’s separately for the limited and full edit models.
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Figure 4.2: Trace (left) and posterior density (right) plots for the gender regression param-

eters in the IRM model. Prior densities are drawn in grey, each of the 5 chains has its own

color with the average density drawn with the thick black line.
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Out of the 20,609 students with only one survey, the full edit changed the gender of 101

(< 1%) students, on average. Of the 3,199 students with exactly 2 surveys, 64 (2%) students

reported being male on one survey and female on the other. Of these 64, on average 54.14

(84.5%) were edited as female. Across all 20 MEMI’s under the full edit procedure, at most 2

students consistently reporting being male on both surveys were edited to be Female, and 1

student with 2 consistent reports of female was edited to Male. For students providing data

on 3 surveys, the results of the limited editing procedure are almost completely consistent

with a majority rules deterministic edit. MEMI #1 and #9 edited one person who reported

being female 2 times out of 3 to be male, and MEMI #10 edited one person to be female who

reported being female on only 1 out of 3 surveys. For students who provided 4 surveys there

were no tied inconsistent responses of MMFF, and the results of both editing procedures

were consistent with the majority rules deterministic edit.

Table 4.3 shows that the percent of females ranges from 53.68% to 54.88% across MEMI’s

for the limited edit, and 53.80% to 54.04% for the full edit. These results are combined

using Rubin’s rules and 95% intervals are created that reflect the variation between the

edits. Rubin’s rules to combine estimates across imputations are given in equation (3.1).

The average across all imputations for %F is Q = .5428. The within-imputation variance is

the average of the individual variances, U = 9.2×10−6 and the between-imputation variance

is the variance of the estimates, B = 6.0×10−8. The total variance is the weighted average

of the between and within variances T = 9.3×10−6 and the 95% interval for the percent

female that accounts for the multiple imputations and multiple edits is Q ± 1.96 ∗
√
T =

(.5368, .5488).
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Limited Edit Model Full Edit Model

MEMI # F %F F %F

1 14571 54.27% 14580 54.30

2 14571 54.27% 14614 54.43

3 14567 54.25% 14572 54.27

4 14574 54.28% 14595 54.36

5 14580 54.30% 14624 54.46

6 14565 54.24 % 14617 54.44

7 14567 54.25 % 14598 54.37

8 14567 54.25 % 14616 54.43

9 14580 54.30 % 14588 54.33

10 14587 54.33 % 14678 54.66

11 14568 54.25 % 14620 54.45

12 14576 54.28 % 14606 54.40

13 14567 54.25 % 14612 54.42

14 14585 54.32 % 14614 54.43

15 14578 54.29 % 14621 54.45

16 14582 54.31 % 14617 54.44

17 14575 54.28 % 14613 54.42

18 14571 54.27 % 14611 54.42

19 14572 54.27 % 14615 54.43

20 14580 54.30% 14643 54.53

Combined 54.28 (53.68%, 54.88%) 54.42 (53.80%, 55.04%)

Table 4.3: Number and percent female (N=26,606) after M = 20 edits under each the limited

and full editing models. The mean and 95% intervals for the percent female after combining

across edits using Rubin’s rules is shown in the last row.
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4.2.4 Discussion

Sample Size and Missing Data Out of the 26,851 students in the data set, 245 (0.9%)

did not report a gender on any survey they took and 57 (0.2%) students report different

genders in different years. Less than a 1% error rate is not normally of concern to the

researchers, but examining gender is a natural starting place. It is a single variable that has

been reported repeatedly over time with occasional response error and it is a variable that

is relatively easy for researchers and analysts to understand.

Figure 4.6 shows the results from different ways of calculating the %Female. The most

naive way is shown at the bottom in khaki. This calculates the proportion of females over

all reported genders including repeated measures while ignoring missing data. Moving up

to the dark goldenrod we only include students in the longitudinal cohort and calculate the

naive proportion of all reported genders. This does not account for repeated measures nor

missing data. Both the pale blue and slate blue bars are on the subject level. Gender at this

level has been subject to the PC editing and imputation rules. The olive green bars at the

top are a result of the limited (light) and full (dark) multiple editing procedure. Credible

intervals instead of point estimates for the proportion of females are displayed to reflect the

uncertainty in the editing.

The patterns in Table 4.2 indicate that for this example, a simple majority rules deter-

ministic edit could be suitable for people with an odd number of surveys. For those with an

even number of surveys where no majority can be determined, implementing a multiple edit

procedure is better than a static gender assignment. The number of students consistently

reporting their gender on two surveys that were subsequently edited under the full edit pro-

cedure is fairly large and might be unacceptable to researchers. A middle ground between

the limited and full editing procedures could be explored in further research.

Under the Project Connect deterministic editing and imputation rules, per year missing

values of gender are imputed using the school roster data for that year. Response patterns

that then include both M and F answers were examined after the fourth year of data col-

lection. The yearly imputation of gender could result in an inconsistent response pattern if
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Figure 4.6: Comparison of several methods for calculating the percent female.

the roster gender data obtained from the school is incorrect. It is my experience that data

obtained from the school is also subject to inconsistencies and should not be considered a

gold standard to compare the self-report data to. The PC longitudinal edit rule for a binary

IRM is a simple majority wins. If a student reported FMMM across years then that student

is treated as male. If there is a tie (MMFF or MF) then school roster data is used as the tie

breaker if available and also consistent. Because of these rules, the school roster data can

have an undue influence on the final determination of a student’s gender.

4.3 Example 2: Analysis of Birthplace

Next I analyze birthplace reported over time. Birthplace is used to determine the student’s

generation of immigration, which is used as a measure of acculturation. A student is con-

sidered to be first generation if they and their parents were born outside of the US, second

generation if the student was born in the US but both parents were not, and third gener-

ation if both the student and at least one of their parents were born inside the US. The

Project Connect survey asks students to specify their birthplace each year by selecting one

of 8 options: United States, Mexico, El Salvador, Guatemala, China, The Philippines, Ko-
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rea or Other. To model birthplace as a binary IRM, this variable has been dichotomized

into “United States born” (1), and “Foreign Born” (0). This is not to say that inconsistent

reports between other countries (such as China and Mexico) does not exist, but for the pur-

poses of creating the generation of immigration variable the only distinction that matters is

if the student is born inside versus outside the US.

4.3.1 Data

To model the probability λi a student was born in the US, I use a three level categorical

ethnicity variable represented as three indicator variables; wi = (Hispanic/Latinoi, African-

Americani, Otheri)
′
without an intercept. This variable was defined as the value first reported

by the student. To model the reporting probability πij that a student reports being born

in the US given their true birthplace, I use FEMALE, an indicator of being female, and

standardized AGE. I feel that gender could affect how a student answers the question of

birthplace, it should not predict the actual birthplace. For purpose of illustrating method-

ology I use the Project Connect deterministically edited version of FEMALE, as defined in

Section 3.5.1. This variable is missing on some students so they are excluded. These two vari-

ables plus an intercept make up the response level covariates xij = (1,AGEij, FEMALEij)
′
.

Ethnicity and age are fully observed predictors, records missing a reported birthplace were

excluded to result in an analysis sample size of N = 36, 040 surveys on n = 26, 438 students.

This illustrates an analysis using complete case data only. The model presented in Chapter

7 eliminates this problem by fitting the model at the current iteration using the complete

(edited and imputed) data from the previous iteration.

4.3.2 Prior Distributions and Simulation Settings

Vague normal priors are placed on all regression coefficients. The prior means mα and mβ

are set at (5, 0, 0)
′

and (5, 0, 0)
′

respectively. This reflects the prior belief that there is a high

probability that a student will correctly report their birthplace, and that a priori gender and

age have no expected effect on the reporting accuracy. The prior mean mγ = (1.38, 2.2, 2.2)
′
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is set to reflect the prior belief that Hispanic students have an 80% chance of being born in the

US, while African-Americans and all others are set at 90%. Prior variances are constructed

using equations (4.22a) and (4.22a) with n0 = n1 = 5,

Simulation settings. A total of s = 5 parallel MCMC chains are run with Phase 1

consisting of D = 3 blocks of m = 1, 000 iterations discarded as burn-in. Phase 2 simulation

is run for M2 = 40, 000 additional iterations per chain, retaining every k = 40th iteration.

This results in a final sample size of ñ = 5, 000. Convergence was monitored using trace,

density and Gelman-Rubin diagnostic plots.

4.3.3 Results

Table 4.4 gives summary statistics including the means and standard deviations of the pos-

terior samples of the regression coefficients and the average probability a student is born in

the US. Odds Ratios (OR) or probabilities (p in italics) with corresponding 95% intervals

are included.

The probability of being born in the US for a Hispanic student is .795 (95%PI .787, .802),

for an African-American student .974 (.967, .980), and for students of other ethnicities .66

(.64, .68). The average probability that a domestically born student will correctly report

their birthplace is .990 (.986, .993), and the average probability that a foreign born student

will correctly report their birthplace is 1-.04 = .96 (.95, .97). Being female is associated with

a larger odds of accurately reporting birthplace. US born females have 1.3 times the odds

of reporting they were born in the US compared to males, and foreign born females have

1/.365 = 2.7 times the odds of reporting they were not born in the US compared to males.

Parallel to what was seen with gender, the probability of accurately reporting birthplace

decreases as age increases for those born in the US, and increases with age for those born

elsewhere.

Missing and inconsistent values for birthplace are imputed or edited M = 20 times using

Equation (4.20). Under the limited editing procedure the percent of students in the data
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Parameter Interpretation Mean SD OR/p 2.5% 97.5% p(θj > 0)

λ̄ p(US Born) 0.801 0.002 - 0.797 0.805 1.000

γ1 Hispanic 1.354 0.023 0.795 0.787 0.802 1.000

γ2 African-American 3.630 0.128 0.974 0.967 0.980 1.000

γ3 Other Ethnicity 0.662 0.042 0.660 0.642 0.678 1.000

US Born

α1 Intercept 4.572 0.178 0.990 0.986 0.993 1.000

α2 Female 0.276 0.161 1.318 0.960 1.819 0.959

α3 Age (standardized) =1.458 0.170 0.233 0.165 0.324 <0.001

Foreign Born

β1 Intercept =3.175 0.178 0.040 0.028 0.055 <0.001

β2 Female =1.006 0.254 0.365 0.217 0.593 <0.001

β3 Age (standardized) =0.966 0.112 0.381 0.305 0.472 <0.001

Table 4.4: Summary of the posterior distribution for the IRM birthplace model parameters.

Odds Ratios (OR) or probabilities (p in italics) with corresponding 95% posterior intervals

are included.

set used for this example that are born in the US is 79.36% (78.72%, 79.99%), and 78.65%

(78.15%, 79.15%) under the full edit.

4.3.4 Discussion

Sample Size and Missing Data. Table 4.5 looks at the bivariate combination of missing

and inconsistent responses for birthplace and gender. Compared to the reports on gender,

students were more likely to inconsistently report their birthplace over time; 165 (0.7%)

students inconsistently reported their birthplace but not gender, 52 (0.9%) inconsistently

reported their gender but not birthplace, and 5 (0.08%) inconsistently reported both. More

people were excluded from the modeling stage due to missing gender (245) than missing

birthplace (194). A total of 364 (1.4%) students had their birthplace edited or imputed.

The Project Connect data set has more variables that could have been used as predictors
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Gender

Missing Consistent Inconsistent Total

Missing 26 168 0 194

Birthplace Consistent 219 26216 52 26487

Inconsistent 0 165 5 170

Total 245 26549 57 26851

Table 4.5: Frequency of missing and inconsistently reported gender and birthplace.

of birthplace. These include the language the survey was taken in, the language(s) spoken

at home, and the mother’s and father’s birthplaces. However, not only is the percentage of

missing data in these additional covariates high, the model of how the parental birthplaces

relate to the students’ birthplace is complicated. The prior belief that a student will not

know his or her parent’s birthplace is non-negligible. Neither is the possibility that the

student might not know his or her parent’s birthplace one year, yet would know it the next.

Figure 4.7 shows that the point estimates for the percent of students born in the US are

fairly similar regardless of how the estimate is calculated. However, the MEMI estimates

properly account for the error in the editing and imputation process and show error bars

around this estimated percent.
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Observation level 
 all students

Observation level 
 Longitudinal cohort

Subject level 
 all students

Subject level 
 Longitudinal cohort

Limited MEMI

Full MEMI
% US Born

79.81

79.06

81.92

82.01

78.65

79.36

(78.15,79.15)

(78.72,79.99)

Figure 4.7: Comparing %US born using several different calculations methods.

4.4 Discussion

This chapter introduced the inconsistent repeated measures (IRM) model and provided two

examples of fitting this model and the multiple imputation and editing of the inconsistently

reported measures. If no subject level covariates are available, a modification to this model

can include placing a Beta prior on λ, the probability of the underlying true value being 1.

This model does not consider the temporal nature of the sampling and considers each

survey to be independent repeated measures on the same student. Disregarding the ordering

of the responses is reasonable because this variable has an underlying time-fixed truth. There

is only one underlying true value for each student. This model also only edits and imputes

one variable, the student’s birthplace and uses a version of gender that was subject to missing

and deterministically edited data.

Chapter 7 uses the SyBRMICE procedure to demonstrate a method to edit and impute

birthplace using a gender variable that has also been subject to data editing and imputation.
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CHAPTER 5

Modeling Inconsistent Monotone Longitudinal

Responses

Many longitudinal surveys ask about lifetime behaviors: “Have you ever. . .” questions. There

are three consistent longitudinal response patterns for this type of variable; all No (0), all Yes

(1), or with a single change from always No until the change and always Yes (0 to 1) after the

change. These variables have a structured trend; they are allowed to change but only in a

monotonic manner (0 to 1). An inconsistent response pattern is when the responses go from

Yes to No (1 to 0), which include having multiple change points (No, Yes, No). This chapter

develops a method for modeling, imputing and editing inconsistent monotonic longitudinal

responses to a repeated binary question with a structured trend.

I use a survival analysis approach to model the time where the change point occurs, the

time of event, ti for student i = 1, . . . , n as a function of related predictors xi. Missing and

inconsistent survey data yij are then imputed or edited using samples of posterior predicted

values t
(`)
i .

5.1 Data Management

I construct a balanced data set where all students have equal numbers of surveys; the data

set is filled out into a balanced data set with missing values if a student has missing data that

year. Then all students have 7 surveys, one for each grade 6 through 12. For example, if a

student only participated in 8th and 9th grades, rows for 6th , 7th , 10th , 11th and 12th grades

are added to the data. When initially expanded, the newly introduced rows in are completely

missing on all variables except grade and need to be filled in. For clarity when using this
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balanced structure I let j = 6, . . . , 12 index grade level instead of survey number. Then let yij

be the value of the lifetime question for student i at grade j. This balanced data structure

will be used again in Chapter 7, so I describe which variables can be deterministically filled

in and how this is done at this time, but I do not use all of the variables described until

later. The resulting dataset has an additional 151,384 surveys, for a total of 187,957 records.

Ethnicity is a subject level variable, so the data from the observed records are copied

to all other records for the same student. AGE and study wave are incremented up or

down according to the location of the missing data relative to the observed data. Missing

WEAP and FIGHT are imputed as never carrying a weapon in the past 30 days, and

not fighting in the past 12 months (imputed values of 0). The presence of an SBHC is

completely determined by the school ID, so missing data on school ID is imputed using last

observation carried forward (LOCF) and first observation carried backward (FOCB). If no

data during the high-school years was available then the school ID is imputed as the school

ID that corresponds to the feeder middle school the student reported attending. The value

of intervention depends on the study wave and school ID.

5.2 Modeling Time of Event

The time of event ti is modeled using an interval censored regression model

P (t1i > ti > t2i) = Φ(t2i|x
′

iθ, σ
2)− Φ(t1i|x

′

iθ, σ
2) (5.1)

where Φ is the normal cumulative distribution function, and the pair (t1i, t2i) represent the

lowest and highest possible values for the event time for student i. Proper priors are assigned

to the regression parameters θ and the variance σ2

θ ∼ N(m,V ),

σ2 ∼ IG(a, b).
(5.2)

The model is fit using the MCMCglmm (Hadfield, 2010c) package in R which uses an M-H

sampling algorithm which adapts during a specified burn-in period.

The pair of lowest and highest possible values, (t1i, t2i), for the event time depend on
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the type of censoring. A student with a 1 on the first survey response is left censored

because the event occurred before the first time point. A student with all observed yij = 0 is

right censored because the event did not occur prior to the last observed time point. If the

change point occurs during the study period, it is considered interval censored because this

survival model treats time as continuous but we only observe discrete survey time points.

The censoring time points are then

(t1i, t2i) =


(−∞, gij) for left censored,

(gij,∞) for right censored,

(gij1 , gij2) for observed events,

(5.3)

where gij is the grade level at the event time for subject i = 1, . . . , n, gij1 is the grade where

the last 0 was observed, and gij2 is the grade where the first 1 was observed. So if the reports

for j = 9, 10, 11 are (0,0,1) the interval is (10,11). If the 10th grade report were missing, the

interval would be (9, 11).

5.3 Monotone Editing and Missing Data Imputation

Let j0 and j1 be the grade of the first and last observed value for yij respectively. Then there

are four distinct groups of missing data to be imputed: Prior to the first observed survey

when the value on that survey is 0, prior to the first observed survey when the value on that

survey is 1, after the last observed survey when the value is 0, and after the last observed

survey when the value is 1. Two of these can be deterministically imputed, the other two

require modeling. Starting values for the missing data in these two groups will be discussed

later.

If a student reported No (0) on their first survey, every survey prior to that one can be

imputed deterministically as 0; if yij0 = 0 then set yij = 0 for all j < j0 (FOCB). If the last

observed yij is a 1 then impute a 1 for all later surveys (LOCF). For example if a student

participates in 9th and 10th grades only, with yi9 = 0 and yi10 = 1, then set yij = 0 for

j = 6, . . . , 8 and yij = 1 for j = 11, 12. This process deterministically imputed 56,588 values
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for yij.

Missing data indicators Mij = 1 are assigned if yij is not observed. Observations that are

deterministically imputed are not considered missing. Erroneous data indicators are assigned

to all 7 records on each student i reporting an inconsistent pattern. If a 0 was observed after

a 1 was reported, alternatively if yij = 1 and yij′ = 0 for any j < j′ then Ei = 1.

Consider the `th draw θ(`) from the posterior density p(θ|t,x). The predicted time of first

sex t
(`)
i , is drawn from a truncated normal distribution with mean µ

(`)
i = xi

′
θ(`) and variance

σ2(`)

t
(`)
i = Φ−1

[
Φ
(ai − µ(`)

i

σ2(`)

)
+ ui

(
Φ
(bi − µ(`)

i

σ2(`)

)
− Φ

(ai − µ(`)
i

σ2(`)

))]
, (5.4)

where Φ−1 is the inverse normal CDF, the truncation limits (ai, bi) = (t1i, t2i), and ui ∼

U(0, 1) is a uniform random variable. This predicted value is used to edit and impute the

response level values for yij as follows. Then the `th imputed or edited value is

y
(`)
ij =


yij if Mij = 0 and Ei = 0

0 if (Mij = 1 or Ei = 1) and j < t
(`)
i

1 if (Mij = 1 or Ei = 1) and j ≥ t
(`)
i .

(5.5)

If the observed value is not part of an inconsistent response pattern then the true value

equals the observed value. For any missing values or inconsistent response patterns the true

value is set at 0 for all grades lower than the predicted grade of first sex, and set at 1 for all

grades higher than the predicted grade.

5.4 Example: Ever Had Sex

The analysis sample using the balanced data structure is 183,512 surveys on 26,216 students

not missing the Project Connect deterministically edited versions of gender or birthplace. Of

these, 231 (0.8%) students reported an inconsistent response pattern for ever having sexual

intercourse (I1) on 1,617 surveys. The value for I1 is missing on 96,767 (52.7%) observations.

The total number of surveys then subject to editing or imputation due to inconsistent or

missing data is 98503 (53.7%).
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Ethnicity, age of entry into the study, gender and birthplace are the variables used to

predict the event time, grade at first sex.

xi = (1,AAi, Otheri, Age at entryi, FEMALEi, USi)
′

The prior mean vector m = (12, 0, 0, 0, 0, 0)
′

for the regression coefficients θ is set to reflect

the belief that the average grade at first intercourse is 11th grade, and that all other variables

a priori are not expected to be associated with grade at first sex. The prior covariance matrix

is set as the identity matrix V = I6. The hyper-parameters a and b for the prior distribution

on σ2 are a = b = .001.

5.4.1 Starting Values

Starting values y
(0)
ij for the missing yij are created by using the marginal sample probabilities

of grade at first sex calculated from the sample of observed yij and shown in equation (5.6).

If the first observed response is a 1, yij0 = 1, earlier responses are initialized using these

probabilities. If the last observed response is a 0, yij2 = 0, later responses are initialized in

the same manner. The value of 13 represents anything later than 12th grade. While t is a

continuous measure the starting values are imputed using only the integer portion. Draw

ui ∼ Uniform(0,1). Then for all j < j0 and Mij = 1, set

t
(0)
ij =



6 if ui ≤ .01

7 if .01 < ui ≤ .02

8 if .02 < ui ≤ .04

9 if .04 < ui ≤ .09

10 if .09 < ui ≤ .16

11 if .16 < ui ≤ .25

12 if .25 < ui ≤ .38

13 if ui > .38

, (5.6)

then equation (5.5) is used to impute the missing yij as 0 or 1. Starting values for the

regression parameters θ were set by the MCMCglmm program defaults.
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Parameter Mean SD 2.5% 97.5% P (θ > 0)

Intercept 9.968 0.280 9.440 10.537 1.000

African-American =0.869 0.074 =1.016 =0.723 <0.001

Other Ethnicity 0.691 0.078 0.538 0.844 1.000

Age at entry 0.024 0.017 =0.011 0.057 0.915

Female 0.904 0.048 0.812 1.001 1.000

US Born =0.042 0.059 =0.156 0.077 0.242

Sigma (σ) 2.721 0.050 2.628 2.821 -

Table 5.1: Summary of the posterior distribution for the grade of first sex survival model

parameters with 95% posterior intervals and p-values.

5.4.2 Modeling Results

MCMCglmm was run for 51,000 iterations retaining every 10th iteration and discarding the first

1,000 as burn-in, resulting in a final sample size of 5,000. Convergence was monitored using

trace and density plots. The model converged rapidly, within the first thousand iterations.

Table 5.1 gives summary statistics for the IML model of grade at first sex, including

posterior means, standard deviations and 95% posterior intervals (PI) for the regression

coefficients θ and standard deviation σ. A foreign-born male Hispanic student is expected

to have engaged in sexual intercourse in the 10th grade, 9.97 (95%PI 9.44, 10.54). Being

female postpones the grade of first sex by .904 (.812, 1.00) years, and the age when the

student first participated in Project Connect was not associated with grade of first sexual

intercourse.

Figure 5.1 shows trace and density plots for each of the regression coefficients. Pret-

tier pictures could have been drawn manually, but I wanted to take this opportunity to

demonstrate the default output from plot.MCMCglmm, which is quite sufficient for diagnostic

purposes. The bottom two subplots with the label units represents the modeled variance

parameter σ2.
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5.4.3 MEMI Results

One way to examine the percent of students who are sexually experienced without multiply

counting those with repeated measures is to look at the percent of yij = 1 across grade levels.

Figure 5.2 plots the percent calculated on the complete cases as red dots, and the percents

combined across all 20 MEMI data sets as blue confidence intervals. This shows that the

combined estimates tend to be a bit higher than the observed complete case percent, but

the interval always covers the CC estimate.

When analyzing survey data on measures such as birth control use at last sex, or going

to get a condom from someone on campus, the relevant population is the students who have

ever had sex. For the Project Connect data, this means the subset of surveys where the

response to “Have you ever had sex” is “Yes”. For the multiply edited and imputed data

sets, this is where yij = 1, and in the case of the complete case unedited data set, where

yij = 1. These subsets still contain repeated measures from the same student, so subsequent

analyses need to correctly account for the student clustering.

Figure 5.3 shows what the size of this subset would looks like if calculated on the three

types of data structures discussed in this chapter. The proportion of surveys from students

who have ever had sex is 34.12% of the complete cases, 30.85% (30.47%, 31.22%) of the

surveys from the MEMI balanced data structures, and 34.76% (34.26%, 35.26%) from the

MEMI data sets restricted to those surveys that were originally observed. The proportion

calculated on the balanced structure is lower than the other two due to a large number of 0’s

deterministically imputed. The average then is calculated on more 6th and 7th graders than

the other methods.
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Figure 5.1: Posterior trace and density plots for the grade of first sex model regression coef-

ficients and the variance parameter σ2 (labeled as units) using the default plotting function

from MCMCglmm.
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Figure 5.2: Percent of students who ever had sex by grade. Percents calculated on the

complete case data set shown as red dots, confidence intervals for the percent combined

across all 20 MEMI data sets shown in blue.
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Figure 5.3: Comparison of results from three methods for calculating the percent of obser-

vations on sexually experienced students.
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5.5 Discussion

This chapter introduced a method to stochastically edit and impute inconsistent and missing

data for a variable that has a structured trend. Caution should be given to interpreting the

regression coefficients with respect to interpolation into the months within the year of first

sex. All students were surveyed each spring, but it ranged from February to June. As with

the example of the foreign born Hispanic male on average having sex at grade 9.9, this is

not suggesting that it occurred in the summer prior to the start of the official 10th grade

academic year. All that can be determined by the reports of sexual experience is if the event

occurred prior to the survey date of that academic year.

The predicted time of first sex had a similar distribution to the observed grade at first

sex. There exist other variables in the Project Connect dataset that would be appropriate

to used as predictors, but given the amount of missing and potentially inconsistent data

in those variables, I chose to keep this example simple to serve as an illustration of the

model. A more thorough approach to modeling variables subject to missing and inconsistent

data using variables also subject to missing and inconsistent data is demonstrated in the

SyBRMICE procedure of Chapter 7. Additionally further work should include modifying

the editing model to make minimal changes.
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CHAPTER 6

Modeling Inconsistent Multivariate Responses

This chapter presents a method for modeling and editing inconsistent multivariate responses

(IMV). This type of inconsistency occurs when responses between two or more questions

give conflicting information. For example if the student reports never having sex in their

lifetime, but then on a following question reports having sex in the past three months, these

responses would be inconsistent.

If a two- or multi-way contingency table is created using variables with conflicting re-

sponses, any cell that results in an IMV should be a structural zero: a cell corresponding

to an inconsistent response combination should have exactly zero records in it. Consider

an example of two binary variables (Y1, Y2) both taking on values 0 and 1 where a re-

sponse combination of (Y1, Y2) = (1, 0) is a structural zero. Let P (Y1 = 1) = φ1 and

P (Y2 = 1|Y1 = 0) = φ2, then the joint probability distribution of Y1 and Y2 is shown in Table

6.1.

This chapter provides a procedure that defines a model to estimate the probabilities φ1

and φ2, and a model to stochastically edit the inconsistent responses between these variables.

I apply this procedure to the knowledge and utilization variables of the Condom Availability

Program in Project Connect high schools, and compare the results to several alternative

editing methods.
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Y2

0 1

Y1
0 A: (1-φ1)(1-φ2) B: (1− φ1)φ2

1 C: 0 D: φ1

Table 6.1: Joint distribution of two binary variables Y1 and Y2 with a structural zero at C:

(1,0). The A, B, C, D are cell labels.

6.1 Model Specification

Let yi1 and yi2 be data observed on binary variables Y1 and Y2 respectively from i = 1, . . . , n

students. Let yi1 be distributed as Bernoulli with probability φi1 for all i = 1, . . . , n observa-

tions, and for the n0 observations where yi1 = 0 let yi2 be distributed as Bernoulli probability

φi2. For the remainder n − n0 observations with yi1 = 1, yi2 is constrained to be 1. Let x1

be the n× p matrix of data on p covariates from n students used to predict y1 and let x2 be

the n0 × q matrix of data on q covariates from n0 students used to predict y2 when y1 = 0.

Since Y1 and Y2 are so closely related, x1 and x2 likely have variables in common.

The IMV model is then written as

yi1 ∼ Bernoulli(φi1)

φi1 = Φ(xi1
′
θ1)

(yi2|yi1 = 0) ∼ Bernoulli(φi2)

φi2 = Φ(xi2
′
θ2)

(yi2|yi1 = 1) = 1 with probability 1,

(6.1)

where θ1 and θ2 are vectors of unknown regression parameters of length p and q respectively.

This hierarchical model is fit using data augmentation and Gibbs sampling as described by

Albert and Chib (1993). This method for generating samples from the joint posterior of φi1

and φi2 is described next.
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6.1.1 Sampling Algorithm

The Albert-Chib method (Albert and Chib, 1993) introduces a vector of n continuous vari-

ables Z = (Z1, . . . , Zn)
′
. The Zi have independent normal distributions with mean xi

′
θ

and variance 1, where X is the n × p design matrix of predictor data with ith row xi and

θ the vector of corresponding unknown regression coefficients. The latent variables Z are

connected to the variable Y in that yi = 1 if Zi > 0 and yi = 0 if Zi ≤ 0. Then

φi = P (yi = 1) = P (Zi > 0) = Φ(xi
′
θ),

for i = 1, . . . , n.

The key is to consider this situation as a missing data problem where Zi is a latent variable

and only observed through yi. The conditional posterior distribution for the latent variable

Zi given θ and yi is

[Zi|θ, yi] ∼ N (xi
′
θ, 1)I(Zi > 0), if yi = 1,

[Zi|θ, yi] ∼ N (xi
′
θ, 1)I(Zi ≤ 0), if yi = 0,

(6.2)

where Zi is simulated from a truncated normal distribution (5.4), with the bounds (ai, bi)

on the truncation being either (0,∞) if yi = 1, or (−∞, 0] if yi = 0. If an informative mul-

tivariate normal prior, Np(θ0, V0), is placed on the regression coefficients θ, the conditional

posterior distribution for θ is

[θ|Z,X] ∼ Np(θ1, V1), (6.3)

where

θ1 = (X
′
X + V −10 )−1(X

′
Z + V −10 θ0), (6.4)

V1 = (X
′
X + V −10 )−1. (6.5)

Gibbs sampling is then used to generate samples from the joint posterior density of Z and

θ by alternating draws from the conditional posterior distributions of the Zi’s and the θ’s.

After introducing a second set of latent variables Z∗i , i = 1, . . . , n0 that are associated

with yi2 (when yi1 = 0) in the same manner as described for Zi and yi, model (6.1) can be
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written as

yi1 ∼ Bernoulli(φi1)

φi1 = P (yi1 = 1)

= P (Zi > 0)

= Φ(xi1
′
θ1)

(6.6a)

(yi2|yi1 = 0) ∼ Bernoulli(φi2)

φi2 = P (yi2 = 1|yi1 = 0)

= P (Z∗i > 0|yi1 = 0)

= Φ(xi2
′
θ2)

(yi2|yi1 = 1) = 1 with probability 1 .

(6.6b)

The regression model (6.6a) is fit first and a posterior sample of θ1 is drawn. Model (6.6b)

is then fit on the subset of data where yi1 = 0 and a posterior sample of θ2 is drawn. Next

I discuss how these model results are used to generate stochastic edits for the inconsistent

multivariate responses between Y1 and Y2.

6.2 Multiple Editing Procedures

Similar to the inconsistent repeated measures editing methods introduced in Chapter 4,

the probabilistic editing method to correct inconsistent multivariate responses has a limited

version where only those who are observed to have made an error are edited, and a full

version that is more general and gives everyone the chance to have made a reporting error.

Recall the 2 x 2 cross-tabulation of Y1 and Y2 depicted in Table 6.1. The editing procedures

used to correct this IMV re-allocate records out of the inconsistent cell C and back into

one of the valid (A, B, or D) cells using normalized multinomial probabilities that differ

between the limited and full editing procedure. These editing procedures also consider

the probability of providing IMV reports between Y1 and Y2. Let π1 be the probability of

incorrectly reporting Y1 and π2 be the probability of incorrectly reporting Y2. In this example

these two probabilities are estimated from the data by dividing the number of inconsistent
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Y2

No Yes

Y1 No A: (1− φi1)(1− φi2)π1 B: (1− φi1)φi2π1π2

Yes C D: φi1π2

Table 6.2: Unnormalized multinomial re-allocation probability distribution under the limited

editing procedure to correct IMVs.

reports by the number of responses for both variables

π = π1 = π2 =
# in Cell C

2N
= 0.018, (6.7)

then treating π as known.

Limited Edit. The limited editing procedure only changes records that are in cell C. If

the true values for (Y1, Y2) were A:(No, No) then observing a report combination of C:(Yes,

No) was a result of the student making a single reporting error in Y1. The probability of

this occurring is calculated as the probability of being in cell A pAi = (1 − φi1)(1 − φi2)

times the probability of mis-reporting Y1, π1. Similarly if the true combination was D:(Yes,

Yes), then the probability of a record observed in cell C is pDi = φi1π2. However if the true

combination was B:(No, Yes), then the inconsistent response combination C was a result of

mis-reporting both Y1 and Y2. The probability of this occurring is pBi = (1 − φi1)φi2π1π2.

These probabilities are displayed in Table 6.2 and after normalization, they serve as the

multinomial re-allocation probabilities for an observation in cell C.

Full Edit. The full editing procedure reflects a model wherein each student has an under-

lying true cell that they belong to, which is potentially different from their observed cell.

This means any combination of (Y1, Y2) could be a result of a reporting error and thus can

be re-allocated back to any other valid cell, e.g. A→ B, or D→ A. I structure the subscripts

as p(OBS)(TRUE)i, where the first subscript denotes the cell the record was observed in, the

second subscript denotes the cell that reflects the true combination of responses.
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Observed True Cell

Cell A B D

A (1− φi1)(1− φi2)(1− π1)(1− π2) (1− φi1)φi2(1− π1)π2 φi1π1π2

B (1− φi1)(1− φi2)(1− π1)π2 (1− φi1)φi2(1− π1)(1− π2) φi1π1(1− π2)

C (1− φi1)(1− φi2)π1(1− π2) (1− φi1)φi2π1π2 φi1(1− π1)π2

D (1− φi1)(1− φi2)π1π2 (1− φi1)φi2π1(1− π2) φi1(1− π1)(1− π2)

Table 6.3: Multinomial re-allocation probability distribution under the full editing procedure

to correct IMVs.

Table 6.3 lists all possible probabilities that an observation is found in one of three true

cells along the top but is observed in one of the four cells on the left. Then the probability

that an observation found in any cell on the left should be reallocated to the true cell along

the top is proportional to the row probabilities given in the row where the observation is

observed. To illustrate the full edit procedure, consider a record with a response combination

of A:(No, No). The probability pAAi in the table is the product of cell A being the true

cell probability (1− φi1)(1− φi2), times the probability that they did not make an error in

either variable, (1 − π1)(1 − π2). This is the first entry in the A row of table 6.3. Likewise

pABi is calculated as the probability of truly being in B, (1− φi1)φi2, times the probability

of an error in Y2 but not Y1, (1 − π1)π2. Lastly, pADi is the probability φi1 of being in cell

D, times the probability, π1π2, that an error was made in both variables.

Creating multiple edited data sets. Consider draws φ
(m)
i1 and φ

(m)
i2 from the posterior

densities p(φi1|yi1,xi1) and p(φi2|yi2,x2) respectively for m = 1, . . . ,M . The reallocation

probabilities are calculated for each student i = 1, . . . , n using either Table 6.2 normalized

or the appropriate row of Table 6.3 normalized, and a vector R
(m)
i from a multinomial

distribution is drawn. For example under the limited editing procedure, R
(m)
i is drawn as

R
(m)
i ∼ Multinomial(1, p

(m)
Ai , p

(m)
Bi , p

(m)
Di ). (6.8a)
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The pair of edited values (yEi1, y
E
i2) is then

(yEi1, y
E
i2)

(m) =


(0, 0) if R

(m)
i = (1, 0, 0)

(0, 1) if R
(m)
i = (0, 1, 0)

(1, 1) if R
(m)
i = (0, 0, 1).

(6.8b)

Next is an example of applying this model to multiply edit potential inconsistent multi-

variate responses on the knowledge of and utilization of the Condom Availability Programs

at Project Connect schools.

6.3 Condom Availability Program

Los Angeles Unified School District mandates Condom Availability Programs (CAPs) be

in place in all of its high schools. One of the aims of Project Connect was to insure that

CAPs were up and running in accordance with policy. One of the measures to assess the

effectiveness of the CAP intervention was to ask students to report if they knew of someone

on campus that gave out condoms. To measure utilization of the program the students were

asked if they had ever gotten a condom from this person. The full text of these questions

can be found in Appendix table A.4 where G1 is the knowledge question and G3 the question

on utilization. These questions are worded so that the student does not have to know about

the program by name, just whether or not they can get condoms from a person on campus.

The amount of condoms ordered each year by the school can be used as an additional

measure of how well the CAP is functioning. DeRosa et al. (2012) showed that the number

of condoms ordered by the high schools participating in Project Connect varied quite dra-

matically across study years. This is in part due to the presence (or absence) of a strong

program champion, and because some schools took longer to achieve a successful and com-

pliant CAP. Due to the volatile nature of the CAP, in combination with students switching

schools, responses provided by students will be treated as independent across years, and a

monotone structure is not imposed.
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Knowledge (Y2)

No Yes Total

Utilization (Y1)
No A: 10,802 (55.3%) B: 5,395 (27.6%) 16,197

Yes C: 673 (3.5%) D: 2652 (13.6%) 3,325

Total 11,475 8,047 19,522

Table 6.4: Distribution of response combinations between reported knowledge and utilization

of the Condom Availability Program.

6.3.1 Data

Let Y1 = utilization and Y2 = knowledge. Table 6.4 shows the observed joint distribution of

(Y1, Y2). More than half of students (55.3%) said they neither knew about nor utilized the

CAP, nearly three in ten students (27.6%) said they knew of someone who gave out condoms

but have not received one, and more than one in ten (13.6%) said they knew about, and

have used the CAP. Almost 4% (673) of the 19,522 students gave an inconsistent response

combination of not knowing that someone on campus gave out condoms, but that they have

received condoms from this person. The n=19,522-673 = 18,849 consistent records are used

to model φ1 and n0 = 16, 197 records with yi1 = 0 are used to model φ2.

Missing data is not considered at this time and only records with complete outcome and

predictor data are used. A more thorough treatment of missing covariate data is developed

in Chapter 7. The predictors used to model both Y1 and Y2 are: AGE (mean centered and

standardized), presence of a School-Based Health Center (SBHC) on campus, an indicator of

being in the intervention condition (INTERV), an indicator of ever having sexual intercourse

(SEXP), gender (FEMALE) and being US born (US). As with the previous examples, the

versions of gender and birthplace are the Project Connect deterministically edited versions.

Then

X1 = (1, AGE, SBHC, INTERV, SEXP, FEMALE, US)
′

and X2 has the same set of covariates, but excludes rows where yi1 = 1.
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6.3.2 Priors and Simulation Settings

Multivariate normal priors were placed on the vectors of regression coefficients for utilization

θ1 and knowledge given no utilization θ2,

θ1 ∼ N
(
(−2, 0, 1, .2, 1, 0, 0)

′
,
n

25
(X

′

1X1)
−1) (6.9a)

θ2 ∼ N
(
(−1, 0, 1, .2, .5, 0, 0)

′
,
n0

25
(X

′

2X2)
−1). (6.9b)

The prior means on the intercepts were set based on a combination of results from trial runs

and the prior belief that there is a low base probability of utilization or knowledge of the

CAP.

Holding other variables at 0, there is a prior belief that students with an SBHC on campus

have a Φ(−2+1)−Φ(−2) = .14 higher probability of utilizing, and a Φ(−1+1)−Φ(−1) = .34

higher probability of knowing about the CAP than those without. Students in intervention

schools have around a .05 higher probability of knowing about and a .01 higher probability of

utilizing the CAP compared to those in control schools. Lastly sexually experienced students

are expected to have around a .15 higher probability of knowing about and getting a condom

from the CAP compared to students who have not yet had sexual intercourse. Gender and

birthplace are a priori not expected to be associated with either knowledge of or utilization

of the CAP. If all covariates are set to 0 and the standardized age is allowed to vary, the min

and max prior probabilities a student will know about the CAP is (.03, .68), and will go to

get a condom from the CAP is (.002, .30).

Both regression models in Model (6.6) were fit using 11,000 iterations on each of s = 5

chains, discarding the first 1,000 and keeping every 10th sample for a final posterior sample

size of 5,000. Convergence was assessed using the diagnostic techniques described in Section

2.3.
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6.3.3 Modeling Results

Define probabilities φ1 and φ2 to be the average probability of a student having gotten a

condom from the CAP and knowing about the CAP

φ1 =
1

n

n∑
i=1

φi1,

φ2 =
1

n0

n0∑
i=1|y(`)i1 =0

φi2.

(6.10)

Table 6.5 gives summary statistics that describe the posterior distributions for the unknown

parameters, including the average probabilities calculated in (6.10). Individual parameter

estimates θ from a probit model do not have simple interpretation as they do in a logit

model. Instead of Odds Ratios, I present the change in probability, ∆p. This has the usual

interpretation of the difference in the probability of the outcome y from 1 unit change in the

covariate x, holding all other covariates at 0. This is calculated the same as when discussing

the prior means. Since Φ is a nonlinear function, this calculation is done on each posterior

sample with the mean, 2.5%tile and 97.5%tile shown in table 6.5.

Being male, older, attending an intervention school, or a school with an SBHC on cam-

pus, being sexually experienced and being born in the US are all associated with a greater

probability of knowing about, or utilizing the CAP.

6.3.4 Editing Results

The data was edited M = 20 times under both the limited and full editing procedures. The

results were combined back into the original data set to create Multiply Edited (ME) data

sets which are indexed by m = 1, . . . , 20. There are 20 ME’s under the limited edit and 20

ME’s under the full editing procedure.

Table 6.6 gives the reallocation distribution for the first 10 ME’s under the limited editing

procedure, which only edited the 673 inconsistent records in cell C. For example consider

m = 1, ME#1; 485 (72.1%) were moved from (Y1, Y2) = (1, 0) to (0,0), 183 (27.2%) were

reallocated to (1,1), and the remaining 5 (.7%) were reallocated to cell B, (0,1). Table 6.7
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compares the overall cell percents for the first 5 edits between the limited and full editing

procedures. The results are similar between the two editing procedures, with the proportion

in cell A ranging from 58.0% to 58.4% under the full editing procedure while under the

limited edit, cell A has a range of 57.7% to 58.0%.

When looking at the cell percentages it is not clear how the results of the limited and

the full editing procedures differ in practice. I take a step inward and look at how the raw

data was changed on a univariate level. Table 6.8 shows how many, and in what direction,

records were edited under each editing procedure for ME #1. The raw observed data for yi1

and yi2 are labeled G3i, and G1i and the edited values are yEi1 and yEi2 respectively.

Table 6.8 shows that the limited editing procedure only changed records with G3=1 and

G1=0. The top left corner table shows that 490 (72.8%) IMV records had their utilization

variable changed from Yes to No, and the top right corner table shows that 188 (27.9%) IMV

records had their knowledge variable changed from No to Yes. The bottom two tables show

the results of the full editing procedure on a univariate scale. These tables show that 580

students had their response to the utilization question changed from Yes to No, and 44 from

No to Yes. In addition, 160 students had their response to the knowledge question changed

from Yes to No, and 262 from No to Yes. Univariate tables imply that the editing procedures

favor editing people to Yes knowing but No utilization. However the joint editing tables

clarify that a low percent of records are actually edited into the cell representing knowledge

but no use.
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Parameter Mean SD ∆p 2.5% 97.5% P (θ > 0)

Utilization(Y1)

φ1 0.141 0.002 - 0.137 0.146 -

Intercept =2.246 0.046 - - - <0.001

Age (standardized) 0.078 0.022 0.003 0.001 0.005 1.000

SBHC 0.949 0.027 0.085 0.076 0.095 1.000

Intervention 0.166 0.025 0.006 0.004 0.009 1.000

Sexually Experienced 0.749 0.027 0.055 0.048 0.062 1.000

Female =0.162 0.025 =0.004 =0.005 =0.003 <0.001

US Born 0.140 0.032 0.005 0.003 0.008 1.000

Knowledge | No Utilization(Y2|Y1 = 0)

φ2 0.333 0.004 - 0.326 0.340 -

Intercept =1.139 0.034 - - - <0.001

Age (standardized) 0.064 0.018 0.014 0.006 0.022 1.000

SBHC 0.810 0.021 0.244 0.228 0.259 1.000

Intervention 0.287 0.021 0.070 0.059 0.081 1.000

Sexually Experienced 0.101 0.023 0.022 0.0112 0.033 1.000

Female =0.092 0.021 =0.018 =0.026 =0.010 <0.001

US Born 0.174 0.026 0.040 0.027 0.054 1.000

Table 6.5: Summary of the posterior distribution for the modeled parameters for the IMV

CAP example. The one unit change in probability holding all other covariates at 0, ∆p, and

corresponding 95% posterior intervals for the change are included. The value of p(θ > 0|Y )

is calculated by counting the number of times θ > 0 and dividing it by the sample size.
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(Knowledge, Utilization)

ME # A(0,0) B(0,1) D(1,1) ME # A(0,0) B(0,1) D(1,1)

1 485 5 183 6 490 4 179

2 483 4 186 7 491 5 177

3 476 5 192 8 486 5 182

4 491 4 187 9 484 9 180

5 464 5 204 10 502 3 168

Table 6.6: Cell frequencies of (Utilization, Knowledge) for the reallocated observations after

applying the limited multiple editing model (6.8). 10 out of the 20 MEMI’s created are

shown.

Limited Edit Model Full Edit Model

ME # A B D A B D

1 57.82% 27.66% 14.52% 58.26% 27.46% 14.29%

2 57.81% 27.66% 14.54% 58.15% 27.50% 14.34%

3 57.77% 27.66% 14.57% 58.25% 27.50% 14.26%

4 57.85% 27.66% 14.50% 58.26% 27.51% 14.22%

5 57.71% 27.66% 14.63% 58.34% 27.45% 14.20%

Table 6.7: Valid cell percents for the first 5 edits after applying the limited and full editing

IMV models.
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G3 (Utilization) G1 (Knowledge)

yEi1 yEi2

Limited Edit No(0) Yes(1) Limited Edit No(0) Yes(1)

G3i
No(0) 16197

G1i
No(0) 11287 188

Yes(1) 490 2835 Yes(1) 8047

yEi1 yEi2

Full Edit No(0) Yes(1) Full Edit No(0) Yes(1)

G3i
No(0) 16153 44

G1i
No(0) 11213 262

Yes(1) 580 2745 Yes(1) 160 7887

Table 6.8: Univariate IMV reallocation frequencies from ME #1 under the full and limited

editing procedures. Entries in the diagonal cells in any sub-table are counts of unchanged

values.
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6.4 Comparison to Alternative Editing Methods

If no additional information from related covariates is available, valid cell counts (A, B, D)

can be modeled as a multinomial outcome. Knowledge and utilization can be modeled jointly

using

Y = (A,B,D) ∼ Multinomial(δA, δB, δD). (6.11)

Assigning a uniform Dirichlet(1,1,1) prior on δ = (δA, δB, δD) results in a conjugate poste-

rior distribution Assigning a uniform Dirichlet(1,1,1) prior on δ = (δA, δB, δD) results in a

conjugate posterior distribution

g(δ|Y ) ∼ Dirichlet(A+ 1, B + 1, D + 1), (6.12)

which can be sampled from directly. I created a posterior sample of size 5,000, and M = 20

draws from g(δ|Y )were used to create a vector of multinomial probabilities, which were then

used to re-allocate the inconsistent records back to one of the three valid cells.

I compare the proportion of students in each of the three valid cells after multiple different

editing rules have been applied: complete case, where all inconsistent responses are discarded;

deterministic, using the set of Project Connect editing rules; a joint probability model, and

the conditional regression using the limited and full editing procedures. The complete case

analysis drops all records with inconsistent responses. The deterministic editing rules used

on the PC data are described in section 3.5.1, the joint probability model was just introduced

and the conditional regression was introduced in Section 6.2.

Each row in Table 6.9 represents the cell proportions under each editing procedure. I

produced M = 20 edited data sets under each of the multiple editing procedure described.

Mean cell proportions and 95% intervals are calculated using Rubin’s Rules (3.1) to combine

cell counts across edited data sets. Proportions are calculated by taking the combined mean

and 95% intervals for the counts and dividing by the sample size. Deterministic editing

resulted in more people being classified as knowing about, but not using the CAP, whereas

the regression model with either editing procedure resulted in more people being classi-

fied as both knowing about and getting a condom from the CAP than the other methods.
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(Utilization, Knowledge)

Editing Method A(No, No) B(Yes, No) D(Yes, Yes)

Complete case 57.5 28.5 14.0

Deterministic 58.5 27.8 13.7

Joint
57.6 28.4 14.0

(56.9-57.9) (27.8-28.8) (13.5-14.2)

57.8 27.7 14.5
Regression - Limited Edit

(57.1-58.2) (27.0-28.0) (14.0-14.8)

Regression - Full Edit
58.2 27.5 14.3

(57.5-58.6) (26.8-27.8) (13.8-14.5)

Table 6.9: Mean cell proportions and 95% intervals for the combination of Utilization and

Knowledge under different editing models. All multiple editing procedures used M = 20

ME’s.

This conditional regression model uses more subject-level information than the other editing

models.

6.5 Discussion

The data used for Y1 and Y2 in this example are not the true raw versions as reported by the

students on paper. The Project Connect analysis team noticed a discrepancy during a 2011

analysis that led them to (re)discover a change in the survey that caused previously unnoticed

problems. In 2005, there was a skip pattern in place for the CAP section. If the student said

“No” or “I don’t know” to the question “Does someone at your school give out condoms?”

they were instructed to skip to the next section. Not all students followed this skip pattern

correctly. The text for this skip pattern was removed in 2006. Different skip patterns were

observed between the baseline year compared to later years, so the deterministic imputation

rules in place were re-examined and updated by the measurement team in 2011. The values
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for G3 and G1 used in this dissertation are the updated versions of these variables. This also

serves as an example of how edit and imputation rules are not necessarily 100% correct 100%

of the time. The original rules that were put in place by the measurement team in 2006

(which led to the change in skip pattern wording after 2005) resulted in a lower number of

students providing data on both G1 and G3, and a larger number of inconsistent combination

of reports. This is not to say that the original recode rules were inferior in some way to the

revised recode rules, just that different recode rules generate different results, which could

result in different analysis conclusions.
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CHAPTER 7

SyBRMICE

This chapter combines the ideas and models introduced earlier into a unified, novel method

to handle multivariate missing and inconsistent data. Analyses performed using the multiple

resulting data sets properly account for the additional variability due to uncertainty in the

imputation and editing procedures. This method is called Sequential Bayesian Regression

for Multiple Imputation and Conditional Editing (SyBRMICE). SyBRMICE adds stochastic

editing to the Sequential Regression Multiple Imputation (SRMI) (Raghunathan et al., 2001)

framework of section 3.2.1.

The next section outlines SyBRMICE, a sequential procedure where the results of one

model feed into the next. I then define the indicator variables used to partition the data

into the observed, missing and inconsistent portions of the data.

Two examples illustrate SyBRMICE. The first example in section 7.2 re-examines the

inconsistent multivariate response combination of knowledge and utilization of CAP from

Chapter 6. The second example in section 7.3 expands the first example to additionally

incorporate Chapter 4’s inconsistent repeated measures models for gender and birthplace,

and Chapter 5’s inconsistent monotone longitudinal response model of lifetime sexual ex-

perience. Section 7.4 examines how analysis results differ when models are based on the

complete case data vs. the deterministically edited data vs. the multiple data sets created

by the SyBRMICE process.

The two examples use variables that are only subject to a single edit. SyBRMICE can

accommodate the more complex case where a single variable is subject to multiple editing

models. However this requires a thoughtful setup regarding the order in which the imputation

and editing models are applied.
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7.1 SyBRMICE Notation and Algorithm

The SyBRMICE algorithm is sequential. Consider a set of variables Y1, . . . , YP that are

subject to missing and/or erroneous data. For each Yp the SyBRMICE algorithm follows

the general frameworks seen in earlier chapters. At step p of iteration ` a regression model

fp(y
(`−1)
p |y(`)−p,Xp,θp) is fit on the current values of Yp, y

(`−1)
p using fully observed predictors

Xp specific to this step and y
(`)
−p, the current value of all other Yj, j 6= p

y
(`)
−p = (y

(`)
1 , . . . , y

(`)
p−1, y

(`−1)
p+1 , . . . , y

(`−1)
P ). (7.1)

Posterior regression parameter estimates θ(`)
p are drawn and used in an imputation

gp(y
I
p|y

(`)
−p,Xp,θ

(`)
p ) model. If the vector of editing parameters φp contain parameters not

included in θp, those additional parameters are estimated and used in an editing

hp(y
E
p |y

(`)
−p,Xp,φ

(`)
p ) model. The results from both editing and imputation models are com-

bined with the observed data to create a complete and consistent vector of imputed true

responses y
(`)
p . The updated vector y

(`)
p is then used as a predictor in the regression model

for the other Yj, j 6= p.

For example a regression model depending on unknown parameters θ1 is fit to y
(`−1)
1 using

predictors (x1, y
(`)
−1), θ

(`)
1 is drawn from its posterior distribution, and a complete true vector

y
(`)
1 of true values is created. Then a model depending on θ2 is fit to y

(`−1)
2 using predictors

(x2, y
(`)
−2). Regression parameters θ

(`)
2 are drawn from the posterior and a complete true vector

y
(`)
2 is created, which is then passed onto the next step. These steps continue until all P

variables subject to missing and/or inconsistent data have been modeled, and the complete

true data vector y
(`)
P is passed back to the first regression model on y

(`)
1 to start the next

iteration of the SyBRMICE algorithm.

SRMI has this same cyclical framework, with one main difference aside from the addition

of the stochastic editing step. SRMI fits the regression models only on the observed data

y1 at each step, whereas SyBRMICE fits the regression model on the imputed and edited

values from the previous iteration y
(`−1)
p , p = 1, . . . , P . This process is outlined in detail in

Algorithm 7.1.
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Missing and Inconsistent Data Indicators To prepare the data for modeling I first

create vectors of indicators of erroneous and missing data Ek and Mp as described in section

3.2. Recall that Mp is associated directly with Yp, but Ek can involve more than 1 variable.

Still, the missing and erroneous indicators are mutually exclusive. If the value of a variable

is missing, it cannot be inconsistent.

For the simple case where a variable Yp is subject to a single inconsistency Ep, the indi-

cators can index the data such that each variable Yp can be partitioned into nokp observed

consistent rows yokp , nEp observed inconsistent rows yEp , and nIp unobserved, or missing, rows

Y I
p . So without loss of generalizability, yp = (yokp , y

E
p , y

I
p) is the N -vector of data yp where

nokp + nEp + nIp = N for all p = 1, . . . , P .

Next starting values for all unknown parameters are created. This includes regression

parameters θ(0)
p , and editing and imputation parameters φ(0)

p and θp. Also starting values

for the missing y
I(0)
p and inconsistent y

E(0)
p data are generated, creating the starting data

vector Z
(0)
p = (yokp , y

E(0)
p , y

I(0)
p ) for all p. Iteration ` = 1 for variable Yp of SyBRMICE is

described in detail in Algorithm 7.1.

Not all editing and imputation procedures occur as separate steps. For example the

inconsistent repeated measures (IRM) and inconsistent monotone longitudinal (IML) models

impute missing and edit inconsistent data simultaneously, where the inconsistent multivariate

response (IMV) model in this chapter imputes missing data then edits the inconsistent

combinations. In the cases where the editing and imputation models are combined, steps 3

and 5 in algorithm 7.1 are combined into a single step that occurs after step 4.
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Algorithm 7.1 Iteration ` of the SyBRMICE procedure.
For variable Yp, p = 1, . . . , P at iteration `,

1. Sample θ
(`)
p from its conditional posterior distribution given the current data,

p(θp|y(`)1 , . . . , y
(`)
p−1, y

(`−1)
p , . . . , y

(`−1)
P ,Xp). (7.2)

2. For each i = 1, . . . , nIp subjects with Mip = 1, draw a value y
I(`)
ip from the posterior predictive

distribution for the missing data conditional on the most recently drawn values,

gp(y
I
ip|y

(`)
i1 , . . . , y

(`)
ip−1, y

(`−1)
ip+1 , . . . , y

(`−1)
iP ,θ(`)

p ,xip). (7.3)

3. If φp contains additional parameters not contained in θp, sample φ
(`)
p from its conditional

posterior distribution,

p(φp|y
(`)
1 , . . . , y

(`)
p−1, y

(`−1)
p , . . . , y

(`−1)
P ,Xp). (7.4)

4. For each i = 1, . . . , nEp subjects with Eip = 1, draw y
E(`)
ip from the editing model for the

inconsistent data conditional on the most recently drawn values,

hp(y
E
ip|y

(`)
i1 , . . . , y

(`)
ip−1, y

(`−1)
ip+1 , . . . , y

(`−1)
iP ,φ(`)

p ,xip). (7.5)

5. The complete imputed and edited true data vector y
(`)
p = (y

(`)
1p , . . . , y

(`)
np )

′
is then created as

z
(`)
ip =


zokip if Mip = 0 ∩ Eip = 0

y
E(`)
ip if Mip = 0 ∩ Eip = 1

y
I(`)
ip if Mip = 1

(7.6)

for i = 1, . . . , N .
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7.2 Example 1: Modeling Inconsistent Multivariate Responses

Using SyBRMICE

This example uses SyBRMICE to jointly impute missing data and edit the inconsistent

multivariate responses (IMV) for knowledge (KNOW) and utilization (UTIL) of the Con-

dom Availability Program (CAP). The IMV models from Chapter 6 fit the regression model

(6.6a) on utilization for L iterations, then fit model (6.6b) on knowledge for an additional L

iterations. The IMV editing step then occurred after both models were fit. The SyBRMICE

procedure differs by fitting both utilization and knowledge models, and performing an impu-

tation and editing step all within a single iteration. Draws of all unknown parameters from

one iteration are fed into the next.

The priors and starting values are defined as in section 6.3.2. The data set drops cases

with missing predictor variables and uses the deterministically edited values for gender and

birthplace. The second example in this chapter provides an example where all available data

is used: no records are excluded from the analysis.

7.2.1 Data

This example uses data from N = 22, 251 surveys from high school students. Table 7.1

shows that nmis1 = 139 + 75 = 214 are missing a response for the utilization question (Y1)

only, nmis2 = 80 + 21 = 101 are missing a response for the knowledge question (Y2) only, and

2414 are missing both. The missing data indicator Mi1 = 1 if yi1 is missing, and Mi2 = 1

if yi2 is missing for all i = 1, . . . , N . Of those that provided data on both variables, nerr1 =

673 (3.5%) report the IMV response combination (Ei1 = 1) of not knowing that someone on

campus gives out condoms, but that they have received condoms from this person before.

The q = 9 fully observed predictor variables include an intercept, ethnicity (Hispanic,

African American, Other), standardized age (AGE), presence of a school based health center

(SBHC), indicator of being in the intervention condition (INTERV), being female (FE-

MALE), being born in the United States (US), and an indicator of ever having had sexual
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Knowledge (KNOW)

0 1 Missing Total

0 10802 5395 80 16277

Utilization 1 673 2652 21 3346

Missing 139 75 2414 2628

Total 11614 8122 2515 22251

Table 7.1: Cross-tabulation of utilization by knowledge of the CAP among high school

students.

intercourse (SEXP). So

X1 = (1, AA, OTH, AGE, SBHC, INTERV, FEMALE, US, SEXP)
′

is the N × q data matrix used to model Y1 and X2 is the N0 × q data matrix used to model

Y2, where N0 = 16, 277 rows with yi1 = 0. The regression, imputation, and editing models

specific for Y1 and Y2 are defined first, followed by a description of how they are used in the

SyBRMICE algorithm.

7.2.2 Model Definitions

Regression models. The probability φi1 that student i has gotten a condom from the

CAP is modeled using (7.7a), and conditional on not utilizing the CAP (yi1 = 0), the

probability φi2 of student i knowing they can get condoms from someone on campus is

modeled using (7.7b)

yi1 ∼ Bernoulli(φi1)

φi1 = Φ(x
′

i1θ1)
(7.7a)

(yi2|yi1 = 1) = 1 with probability 1

(yi2|yi1 = 0) ∼ Bernoulli(φi2)

φi2 = Φ(x
′

i2θ2).

(7.7b)
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Multivariate normal priors are placed on the regression coefficients θ1 and θ2

θ1 ∼ N
(

(−2.5, 0, 0, 0, 1, 0, 0, 0, 1)
′
,
19623

25
(W

′

1W1)
−1
)
, (7.8a)

θ2 ∼ N
(

(−1.5, 0, 0, 0, 1, 0, 0, 0, 0)
′
,
16197

25
(W

′

2W2)
−1
)
, (7.8b)

where the prior variances are calculated using only the 19,623 rows with observed Y1 and

16,197 rows with observed Y2|Y1 = 0. The data matrix W1 contains the rows i of X1 where

yi1 was observed and W2 contains the rows i of X2 where yi2 was observed and yobsi1 = 0.

The prior means are set based on observing trends in early test runs of this model using

non-informative priors. The scaling factor c = 25 was determined by varying c in these test

runs and choosing the one that produced a prior variance larger than the resulting posterior

variance for each regression parameter, yet not too diffuse to be uninformative.

Imputation model. The imputation models for Y1 and Y2 contain logical constraints so

that imputed values do not result in an inconsistent combination. Consider draws θ∗1 and θ∗2

from the posterior densities p(θ1|y1,X1) and p(θ2|y2, y1 = 0,X2) respectively at the current

iteration of the algorithm. Then for all i = 1, . . . , nmis1 with Mi1 = 1, imputed values yIi1 are

drawn from

yIi1|θ∗1, yi2,xi1


= 0 with probability 1 if yi2 = 0

∼ Bernoulli(Φ(x
′

i1θ1)) if yi2 = 1

(7.9a)

and for all i = 1, . . . , nmis2 with Mi2 = 1, imputed values yIi2 are drawn from

yIi2|θ∗2, yi1,xi2


∼ Bernoulli(Φ(x

′

i2θ2)) if yi1 = 0

= 1 with probability 1 if yi1 = 1.

(7.9b)

Since I am imputing prior to editing, I could ignore the logical constraints and allow the

missing value to be imputed in an inconsistent manner. This would be similar to the full

edit editing procedure where every record is stochastically edited regardless of their observed

values. In this dissertation I primarily use the limited edit versions of the edit and imputation

procedures. This is more aligned with the standard practice of imputing according to logical

constraints as found in other multiple imputation software such as IVEWARE.
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After the chains have been initialized, the imputation of y1 depends on the most recently

imputed value of y2 and vice versa; the imputation of y2 depends on the most recently

imputed value of y1. No further steps are necessary to accommodate when both y1 and y2

are missing because they will have been initialized prior to the first imputation. How starting

values are set is discussed later.

Editing model. For each row with Ei1 = 1, a pair of edited values (yEi1, y
E
i2) are created as

follows. For row i at iteration (`) the current value for θ1 and θ2 are used to calculate the

imputation and editing cell probabilities.

φ
(`)
i1 = Φ(x

′

i1θ
(`)
1 ), (7.10a)

φ
(`)
i2 = Φ(x

′

i2θ
(`)
2 ) when y

(`)
i1 = 0, (7.10b)

p
(`)
Ai = (1− φ(`)

i1 )(1− φ(`)
i2 )π, (7.10c)

p
(`)
Bi = (1− φ(`)

i1 )φ
(`)
i2 π

2, (7.10d)

p
(`)
Di = φ

(`)
i1 π, (7.10e)

where π = 673
2∗22251 = 0.015. A vector R

(`)
i from a Multinomial distribution is then drawn

R
(`)
i ∼ Multinomial(1, p

(`)
Ai , p

(`)
Bi, p

(`)
Di), (7.11a)

where the cell probabilities have been normalized prior to the draw, and the pair of edited

values (yEi1, y
E
i2) is created as

(yEi1, y
E
i2)

(`) =


(0, 0) if R

(`)
i = (1, 0, 0)

(0, 1) if R
(`)
i = (0, 1, 0)

(1, 1) if R
(`)
i = (0, 0, 1).

(7.11b)

102



7.2.3 Algorithm

Initializing the chains. The starting values (` = 0) for all random variables (missing

data and regression parameters) are created for each chain as follows.

1. Missing yi1 are drawn as a random Bernoulli(.328) variable if yi2 = 1 or missing. Set

yi1 = 0 if yi2 = 0. The probability parameter .328 is calculated as the average observed

value of yi1 across observations with yi2 = 1 or missing; .328 = 1
2673

∑
i=1 yi1.

2. Missing yi2 are drawn as a random Bernoulli(.333) variable if y
(0)
i1 = 0. Set yi2 =

1 if y
(0)
i1 = 1. The probability parameter is calculated as the average value across

observations with yi1 = 0 or missing; .333 = 1
5740

∑
i=1 yi2.

3. Starting values for the elements of θ1 and θ2 are set as the prior mean plus or minus

a random uniform deviate from [-1,1] to create diversity across chains.

The SyBRMICE procedure then proceeds as detailed in Algorithm 7.2.

7.2.4 Modeling Results

The final simulation was run for 4,200 iterations on each of 5 chains. After discarding the

first 200 iterations per chain and keeping every 10th iteration, the final posterior sample size

was 2,000. Convergence diagnostic plots for θ1 and θ2 are located at the end of this chapter,

appendix figures 7.3 and 7.4. These show that the chains were run long enough to achieve

adequate mixing, convergence and approximately normal posterior densities.

Table 7.2 gives summary statistics for the posterior distribution of the probit regression

parameters θ1,θ2. Posterior mean estimates, standard deviations and 95% intervals are

reported. Being older, having an SBHC, attending an intervention school, being US born

and ever having sex are all associated with an increased probability of both knowing about

and getting a condom from the CAP. Being female was associated with a lower probability

of knowing about or getting a condom from the CAP. African-American students have lower,

and other ethnicity have higher probabilities of both knowing about and utilizing the CAP
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Algorithm 7.2 SyBRMICE Algorithm Applied to Inconsistent Multivariate Responses Be-

tween Knowledge and Utilization of the CAP.
Do from ` = 1 to L

1. Model and update CAP utilization.

(a) Fit model (7.7a) using all y
(`−1)
1 , the complete and consistent data on utilization from

the previous iteration.

(b) Sample θ
(`)
1 from its posterior distribution (6.3).

(c) For each observation with Mi1 = 1, draw an imputed value y
I(`)
i1 from (7.9a).

2. Model and update CAP knowledge, conditional on the response for utilization.

(a) Fit model (7.7a) using y
(`−1)
i2 the data on knowledge from the previous iteration condi-

tional on the current value of utilization being zero, y
(`)
i1 = 0.

(b) Sample θ
(`)
2 from its posterior distribution (6.3).

(c) For each observation with Mi2 = 1 draw an imputed value y
I(`)
i2 from (7.9b).

3. For each observation with Ei2 = 1, draw jointly edited values (yEi1, y
E
i2) using equation (7.11).

4. The observed, imputed and edited data are concatenated as in equation (7.6) to create

complete and consistent vectors y
(`)
1 and y

(`)
2 .
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compared to Hispanic students.

I calculate the posterior distribution of Φ(cp
′
θp) to describe the posterior probabilities

of knowing about, and getting a condom from the CAP for 2 fictitious students with co-

variate profiles c1 and c2. A foreign born, African-American male student who has had

sex, attends a control high-school school without a school based health center and is 14.9

years old has a Φ
(
(1, 1, 0, 0, 0, 0, 0, 0, 1)θ1

)
= .06 (95%PI .05, .08) probability of getting a

condom from the CAP. Similarly a 14.9 year old Hispanic girl from Los Angeles attending

an intervention high school that has a school based health center but has not had sex has

a Φ
(
(1, 0, 0, 0, 1, 1, 1, 1, 0)θ2

)
= .52 (.50, .53) probability of knowing about the CAP at her

high school.

Figure 7.1(a) shows the posterior kernel density estimate (KDE) of the cell editing prob-

abilities p
(`)
Ai , p

(`)
Bi and p

(`)
Di, using all ` samples, defined in equations (7.10c) – (7.10e). This

plot indicates that the probability pDi of being edited into cell D is likely 0.2, or 0.6, and the

probability pAi of being edited into cell A is near either 0.4 or 0.8. This bimodal distribution

is driven by the SBHC; students attending schools with a school based health center have a

higher posterior mean probability of being edited into cell D compared to students without

SBHC’s. The probability of an inconsistent record being edited into cell B is essentially 0.

This means that virtually all inconsistent records are either edited into cell A, or cell D.

Figure 7.1 (b) confirms this nearly perfect inverse relationship between pAi and pDi. This

displays data from the first 5 inconsistent records. The upper portion plots the editing cell

probabilities (p
(`)
Ai , p

(`)
Di) against each other, with y = 1−x as a grey reference line. The lower

plot shows the marginal posterior distribution of pAi, demonstrating that within a student,

there is variability in the probability that the student would be edited into cell A. Including

and accounting for this variability in the editing process is the core purpose of SyBRMICE.

An edit must be made, but it should have a random component, and that added uncertainty

should be carried through to the final modeling results.
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7.2.5 MEMI Results

From the posterior samples, M = 20 random draws were used to generate the 20 MEMI data

sets. Valid cell counts were generated on each MEMI data set, and the results combined

using Rubin’s Rules (3.1). The intervals are generated on the cell counts, then converted

to percentages by dividing by N . The results are shown in Table 7.3 and show that 58.6%

(57.9%, 59.3%) of students do not know about, nor have gotten a condom from the CAP;

27.8% (27.2%, 28.5%) know about, but have not gotten a condom from the CAP; and 13.6%

(13.1%, 14.1%) know about and have gotten a condom from someone at their school.

Figure 7.2 provides a comparison of the marginal percentage of students who knew about,

and who got a condom from the CAP as calculated across all observations on the complete

case (CC) and combined MEMI data sets. The MEMI estimate of the percent of students

getting a condom from the CAP is smaller than the percentage calculated on the complete

case data; 13.6% (13.1%, 14.1%) vs. 17.0%. The estimates for the percent who knew about

the CAP are slightly larger for the MEMI estimates compared to the complete case estimates;

41.5% (40.1%, 42.1%) vs. 40.1%.

The next section presents a complete and full SyBRMICE model, where multiple variables

are subject to missing and/or inconsistent data, and the predictors used to model these

variables are themselves subject to missing and/or inconsistent responses.
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Parameter Mean SD 2.5% 97.5% p(θqk > 0|Y )

Utilization(Y1)

Intercept =2.299 0.045 =2.384 =2.216 <0.001

African-American =0.011 0.041 =0.092 0.071 0.386

Other 0.179 0.039 0.103 0.261 1.000

Standardized Age 0.026 0.013 0.000 0.051 0.976

SBHC 0.973 0.027 0.919 1.026 1.000

Intervention 0.204 0.025 0.154 0.253 1.000

Female =0.164 0.024 =0.209 =0.115 <0.001

US Born 0.150 0.031 0.088 0.210 1.000

Sexually Experienced 0.755 0.027 0.705 0.808 1.000

Knowledge | No Utilization(Y2|Y1 = 0)

Intercept =1.150 0.034 =1.215 =1.083 <0.001

African-American =0.065 0.034 =0.133 0.002 0.028

Other 0.163 0.033 0.097 0.229 1.000

Standardized Age 0.039 0.011 0.016 0.060 1.000

SBHC 0.795 0.020 0.756 0.834 1.000

Intervention 0.289 0.021 0.248 0.330 1.000

Female =0.087 0.022 =0.130 =0.045 <0.001

US Born 0.190 0.026 0.138 0.241 1.000

Sexually Experienced 0.093 0.022 0.049 0.137 1.000

Table 7.2: Summary of the probit regression parameter posteriors for the SyBRMICE CAP

example of section 7.2.2.
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(a) Editing probability

pA
pB
pD
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(b) pA
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Figure 7.1: Posterior probability densities for the SyBRMICE CAP example. Subfigure

(a) shows the distribution of cell editing probabilities for all iterations defined in equations

(7.10c) – (7.10e). Subfigure (b) is the posterior marginal probability of being edited into cell

A for i = 1, . . . , 5, and the relationship between pAi and the probability of being edited into

cell D, pDi.

Estimate 95% Interval

%(No, No) A 58.55% 57.86% 59.25%

%(No, Yes) B 27.84% 27.21% 28.46%

%(Yes, Yes) D 13.61% 13.14% 14.08%

Table 7.3: Valid cell percent estimates with 95% intervals estimated using M = 20 SyBR-

MICE MEMI data sets and combined using Rubin’s rules.
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MEMI Knowledge

CC Knowledge

MEMI Utilization

CC Utilization

%

41.45

40.89

13.61

17.04

41.45

40.89

(40.75,42.14)

(13.14,14.08)

Figure 7.2: Comparing percent Knowledge and percent Utilization from complete cases (CC)

to 20 SyBRMICE MEMI’s.
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7.3 Example 2: Combining Multiple Imputation and Editing Mod-

els Using SyBRMICE

This section combines all primary models presented in this dissertation into a single multi-

variate analysis that jointly imputes missing and edits inconsistent longitudinal reports of

gender and birthplace, imputes and jointly edits inconsistent multivariate reports of CAP

knowledge and utilization, and imputes and edits inconsistent monotone longitudinal re-

ports of ever having sex. This example demonstrates the flexibility and customizability of

the SyBRMICE procedure.

Let Y1 = FEMALE, Y2 = US, Y3 = SEXP, Y4 = UTIL, and Y5 = KNOW be the five vari-

ables subject to missing and/or inconsistent data for this example. The first two variables,

Y1 and Y2, are subject level variables so constant across all surveys, and the rest Y3, Y4 and

Y5 are observation level variables, meaning they can differ on each survey. Fully observed

predictors are AGEij, SBHCij, INTERVij, WEAPi, FIGHTi, and ethnicity as two indicator

variables AAi, OTHi, using Hispanic as the reference group. All variables were introduced

earlier.

To create a cyclical framework so that the response level CAP variables feed back into the

subject level gender and birthplace models, I introduce two new subject level variables y∗4, y
∗
5

that are calculated as the average response of the corresponding utilization and knowledge

variables yij4, yij5 across all 9th to 12th grades. To maintain equivalence across subjects, these

variables need to be averaged over the same number of surveys for each subject. This is the

second reason for expanding the data set to create a fully balanced data as described in

section 5.1. Not all models in this example will use these added variables. The unaltered

data structure is the response structure while the structure that includes these additional

rows is the balanced structure.

The general process is to first fit the IRM model of Chapter 4 to gender (Y1) using y∗4 and

y∗5 as predictors, impute missing values and edit the inconsistently reported gender. Next

fit the IRM model on birthplace (Y2) using the updated version of Y1, y
∗
4, and y∗5. Missing

values of Y2 are imputed and inconsistently reported birthplace is edited.
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The indicator of ever having sex (Y3) is not modeled directly, but through the survival

model on grade at first sex using the most recent versions of Y1, Y2, y
∗
4, and y∗5 as covariates.

The predicted grade at first sex for each student then is used to edit the inconsistent response

patterns and consistently impute missing values for each subject i across all j surveys.

Utilization of the CAP (Y4) is modeled with Y1, Y2, Y3 as predictors, and missing values

are imputed. Conditional on no utilization (Y4 = 0), knowledge of the CAP (Y5) is modeled

using the same set of predictors as utilization, and missing values for Y5 are imputed. Lastly

the inconsistent pairs of (Y4, Y5) are jointly edited.

The next subsection provides details on each of the regression, editing and imputation

models for all Y1, . . . , Y5.

7.3.1 Model Definitions

Regression Model for Inconsistent Repeated Measures on Gender (Y1). Using

the IRM model from Chapter 4 on the response data structure, the probability φi1 that

student i is female is modeled as

zi1|φi1 ∼ Bernoulli(φi1)

logit(φi1) = w
′

i1γ1

yij1|πij1 ∼ Bernoulli(πij1)

logit(πij1) = x
′

ij1α1zi1 + x
′

ij1β1(1− zi1),

(7.12)

where xij1 = (1, AGEij)
′
,wi1 = (1, WEAPi, FIGHTi, y

∗
i4, y

∗
i5)

′
, zi1 is the underlying latent

value for Y1, and yij1 is the observed value for subject i at time j.

Multivariate normal priors are placed on the vectors of regression parameters α1,β1 and

γ1 with mean vectors mα1 = (5, 0)
′
,mβ1 = (−5, 0)

′
, and mγ1 = (0,−.5,−.5, 0, 0)

′
. The prior

mean vector mγ1 is set to reflect the prior belief that females have a lower likelihood of carry-

ing weapons or fighting (Centers for Disease Control and Prevention, 2010). The prior covari-

ance matrices are calculated as vα1 = vβ1 = N1(X
′
1X1)

−1/5, and vγ1 = n1(W1
′
W1)−1/5

where X1 has rows x
′

ij1,W1 has rows w
′

i1, and where N1 and n1 are the number of rows in

X1 and W1 with no missing data respectively.
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Regression Model for Inconsistent Repeated Measures on Birthplace (Y2). The

probability φi2 that student i was born in the USA is modeled using the response data

structure as

zi2|φi2 ∼ Bernoulli(φi2)

logit(φi2) = w
′

i2γ2

yij2|πij2 ∼ Bernoulli(πij2)

logit(πij2) = x
′

ij2α2zi2 + x
′

ij2β2(1− zi2),

(7.13)

where α2,β2 and γ2 are vectors of regression parameters, xij2 = (1, AGEij, z
(`)
i1 )

′
and

wi2 = (1, AAi, OTHi, y
∗
i4, y

∗
i5)

′
. The predictor z

(`)
i1 is the complete data vector of gender

from the current iteration. How this is created will be described soon. The prior mean

mγ2 = (.85, 0, 0, 0, 0)
′

is set to reflect the prior belief that students of all ethnicities have

a 70% chance of being born in the US, and that a priori knowledge and utilization of the

CAP are not associated with birthplace. The prior covariance matrices are calculated as

vα2 = vβ2 = N2(X
′
2X2)

−1/5, and vγ2 = n2(W
′
2W2)

−1/5, again where X2 has rows x
′

ij2,W2

has rows w
′

i2, and where N2 and n2 are the number of rows in X2 and W2 with no missing

data respectively.

When the model for Yp is hierarchical, as is the case with the IRM models on Y1 and

Y2, sampling from the conditional posterior distribution of p(θp|Yp, X,θ−p) can consist of

several Gibbs or M-H steps, where the M-H steps may use adaptive sampling. Due to this

extra complexity of the model, values simulated from the IRM models take much longer to

converge or achieve suitable mixing than do the samples drawn from the Gibbs sampling

algorithm used in the IMV models. To accommodate this difference I run a mini-cycle of

the IRM model within each larger cycle of the entire SyBRMICE algorithm. During each

full iteration of the SyBRMICE algorithm, the IRM model loops R times on Y1, the values

of the unknown model parameters from the terminal iteration are saved. The complete and

consistent version of Y1, z1 is then passed on to the next IRM model for Y2 which then

loops for R times, saving the values from the terminal iteration. The newly created z1, z2

are then passed to the next steps and the full cycle continues with the models for Y3, Y4 and

Y5 executed to complete one full SyBRMICE cycle. This is done in addition to adaptive
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M-H sampling to get good estimates of the proposal variances for both IRM models prior to

retaining samples in phase 2.

Imputation and Editing Inconsistent Longitudinal Responses of Y1 and Y2. Let

Ei1 = 1 if student i inconsistently reported their gender across surveys, and Ei2 = 1 if they

inconsistently reported their birthplace. The missing data indicators Mi1 and Mi2 are equal

to 1 if student i did not report their gender or birthplace respectively on any survey and 0

otherwise. The individual missing responses of gender yij1 or birthplace yij2 are not imputed

themselves.

Equation (7.14) simultaneously edits the inconsistent and imputes the missing data for

gender or birthplace by creating z
(`)
ip , the current sampled value at iteration ` from the

posterior of student i’s true value. The true value is taken to be the reported value from

the first non-missing response if the student reported this variable consistently, the modeled

latent value if the student reported inconsistently, or drawn from a Bernoulli distribution

using the student’s covariate pattern if the variable was missing on every survey.

z
(`)
ip


= yijp for consistent reports, when Eip = 0

= z
(`)
ip for inconsistent reports, when Eip = 1,

∼ Bernoulli[expit(w
′

ipγ
(`)
p )], when Mip = 1,

(7.14)

where p = 1 or 2 for Y1 and Y2 respectively.

Regression Model for Inconsistent Monotone Longitudinal Reports on Ever had

Sexual Intercourse (Y3). Using the IML model of Chapter 5 on the balanced data struc-

ture, the grade ti the student first reported ever having sex is modeled using an interval

censored regression model

P (t1i > ti > t2i) = Φ(t2i|x
′

i3θ3, σ
2)− Φ(t1i|x

′

i3θ3, σ
2), (7.15)
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where xi3 = (1, AAi, OTHi, Age at entryi, zi1, zi2, y
∗
i4, y

∗
i5)

′
. Priors are assigned to the

regression parameters θ3 and variance σ2

θ3 ∼ N(m3,v3),

σ2 ∼ IG(.001, .001).
(7.16)

The mean vector m3 = (12, 0, 0, 0, 0, 0,−2,−1)
′

is set to reflect the belief that the average

grade at first intercourse is 12th grade, and that both utilization and knowledge of the

CAP are associated with having sex at earlier grades. All other variables are not expected

to a priori be associated with grade at first sex. The prior covariance matrix is set to be

v3 = n3(X
′
3X3)

−1/25, where X3 has rows x
′

i3 and n3 = n, the total number of students in

the sample.

Imputation and Editing models for Ever had Sex. Missing data indicators Mij3 = 1

are assigned if yij3 was not observed. An inconsistent monotone longitudinal response occurs

if a 0 was observed after a 1 was reported, so Ei3 = 1 if yij3 = 1 and yij′3 = 0 when

j < j′. Consider draws θ∗3 and σ2∗ from their posterior distributions given the data. The

predicted grade of first sex t∗i , is drawn from a truncated normal distribution (5.4) with

mean x
′

i3θ
∗
3 and variance σ2∗, and is used to edit and impute the response level values for

yij3 as follows. Missing and inconsistent data are imputed and edited simultaneously and

the sampled complete data vector y
(`)
ij3 is

y
(`)
ij3


= yij3 if Mij3 = 0 and Ei3 = 0

= 0 if (Mij3 = 1 or Ei3 = 1) and gradeij < t∗i

= 1 if (Mij3 = 1 or Ei3 = 1) and gradeij ≥ t∗i ,

(7.17)

The MCMCglmm function also uses an adaptive M-H sampling algorithm, so similar to the

IRM models this survival model is run for an additional Rx iterations per full cycle of the

SyBRMICE algorithm with the values from the terminal iteration passed on as starting

values in the next cycle. During phase 2 all adaptive sampling is disabled, ensuring a

constant proposal distribution for the remainder of the simulation.
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Model for Inconsistent Multivariate Responses between Utilization (Y4) and

Knowledge (Y5) of the CAP. Using the SyBRMICE IMV models described in Example

1, the model of utilization and knowledge of the CAP is fit to the Nc 9th through 12th grade

surveys from the balanced data structure. Whether a student has gotten a condom from the

CAP is modeled as

yij4|φij4 ∼ Bernoulli(φij4)

φij4 = Φ(x
′

ij4θ4)
(7.18)

where

xij4 = (1, AAi, OTHi, AGEij, SBHCij, INTERVij, zi1, zi2, yij3)
′

θ4 ∼ N
(

(−2.5, 0, 0, 0, 1, 0, 0, 0, 1)
′
,
Nc

25
(X

′

4X4)
−1
)
,

where X4 has rows x
′

ij4.

Imputing CAP Utilization. If yij4 is missing then Mij4 is set to 1 and equation (7.9a)

is used to sample imputed values yIij4 for the missing data.

Model CAP Knowledge. Using the balanced data structure on high school students, and

conditional on not utilizing the CAP (from either the observed consistent data, or the most

recently imputed data) the probability a student knows they can get condoms from someone

on campus, φij5, is modeled as

(yij5|Zi4 = 1) = 1 with probability 1

(yij5|Zi4 = 0, φij5) ∼ Bernoulli(φij5)

φi5 = Φ(x
′

ij5θ5).

(7.19)

where

xij5 = (1, AAi, OTHi, AGEij, SBHCij, INTERVij, zi1, zi2, yij3)
′

θ5 ∼ N
(

(−1.5, 0, 0, 0, 1, 0, 0, 0, 0)
′
,
Nc

25
(X

′

5X5)
−1
)
,

where X5 has rows x
′

ij5.
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Imputing CAP Knowledge. If yij5 is missing then Mij5 is set to 1 and equation (7.9b)

is used to sample imputed values y
I(`)
ij5 for the missing data.

Joint Editing of Utilization and Knowledge. The inconsistent data indicator Eij4 is

set to 1 if student i reported the inconsistent combination of no knowledge but utilization of

the CAP on survey j and 0 otherwise. When Eij4 = 1, a pair of edited values (yEij4, y
E
ij5) are

drawn using the IMV limited edit procedure described in equation (6.8). After each of these

editing or imputation procedures is performed, the complete and consistent variables yij4 and

yij5 are created using equation (7.11) and the aggregated values y∗4 and y∗5 are calculated.

7.3.2 Algorithm

Starting the chains The starting values (` = 0) for the missing data and regression

parameters are created for each of s chains:

1. For missing or inconsistent Y1, Y2, starting values for the modeled latent variables zi1,

and zi2 are drawn from a Bernoulli distribution with probability parameters equal to

the average of that variable across subjects without missing or inconsistent data.

2. Starting values for the missing yij3 are created using equation (5.6).

3. Missing values for knowledge and utilization are set as in section 7.2.3.

4. Starting values y
∗(0)
4 and y

∗(0)
5 are calculated from y

(0)
ij4 and y

(0)
ij5, the observed or imputed

values for y4 and y5.

5. Starting values for all regression coefficients are set equal to the prior mean ± a random

uniform deviate from [-1,1] to create diversity across chains.

Since most predictors do not change across iterations, they can be thought of as having

starting values that are constant. I use this concept to shorten notation of the set of predictor

variables. For example consider the predictors for Y4,x4 = (1, AA, OTH, AGE, SBHC,

INTERV, z1, z2, y3)
′
. The values for ethnicity, age, SBHC and intervention condition do
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not change across iterations, only true gender, birthplace, and ever sex (z1, z2, y3) update. I

define x
(0)
4 = (1, AA, OTH, AGE, SBHC, INTERV)

′
. Then at iteration `, x

(`)
4 = (x

(0)
4 , z

(`)
1 ,

z
(`)
2 , y

(`)
3 )

′
. Using this notation the process follows algorithm 7.1, where the first iteration

uses the starting values y
(0)
ijp and subsequent iterations use the complete data vectors z

(`−1)
p

for p=1, 2 and y
(`−1)
p for p=3, 4, 5 from the previous iteration.

At iteration ` the Sequential Bayesian Regression for Multiple Imputation and Conditional

Editing (SyBRMICE) algorithm is

1. Model and update the student’s true gender z1.

(a) Construct the predictor matrix w
(`)
1 = (w

(0)
1 , y

∗(`−1)
4 , y

∗(`−1)
5 ).

(b) Fit the IRM model (7.12) to z
(`−1)
1 with predictors w

(`)
1 , and x1.

(c) Sample γ
(`)
1 from its posterior distribution.

(d) For each subject with Mi1 = 1 or Ei1 = 1, impute missing and edit inconsistent

gender yi1 using equation (7.14) and γ
(`)
1 to create z

(`)
i1 .

2. Model and update the student’s true birthplace z2.

(a) Construct the predictor matrices w
(`)
2 = (w

(0)
2 , y

∗(`−1)
4 , y

∗(`−1)
5 ) and x

(`)
2 = (x

(0)
2 ,

z
(`)
1 ).

(b) Fit the IRM model (7.13) to z
(`−1)
2 using predictors w

(`)
2 , and x

(`)
2 .

(c) Sample γ
(`)
2 from its posterior distribution.

(d) For each subject with Mi2 = 1 or Ei2 = 1, impute missing and edit inconsistent

birthplace yi2 using equation (7.14) and γ
(`)
2 to create z

(`)
i2 .

3. Model and update lifetime sexual experience yij3 using the balanced data structure.

(a) Construct the predictor matrix x
(`)
3 = (x1, z

(`)
1 , z

(`)
2 ).

(b) Fit model (7.15) using predictors x
(`)
3 .

(c) Sample θ
(`)
3 from its posterior distribution and sample the predicted grade at first

sex t
(`)
i only for those missing or need editing.
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(d) For each observation with Mij3 = 1 or Ei3 = 1, impute or edit yij3 using equation

(7.17) to create y
(`)
ij3.

4. Model and update CAP utilization yij4 using the balanced data structure for 9th –

12th grades.

(a) Create the predictor matrix x
(`)
4 = (x4, z

(`)
1 , z

(`)
2 , y

(`)
3 ).

(b) Fit model (6.6a) to y
(`−1)
ij4 using predictors x

(`)
4 .

(c) Sample θ
(`)
4 from its posterior distribution.

(d) For each observation with Mij4 = 1, impute yij4 using equation (7.9a), θ
(`)
4 and

y
(`−1)
ij5 to create y

I(`)
ij4 .

5. Model and update CAP knowledge yij5 using the balanced data structure for 9th –

12th grades and given no utilization.

(a) Construct predictor matrix x
(`)
5 = (x5, z

(`)
1 , z

(`)
2 , y

(`)
3 ).

(b) Fit the IMV model (6.6b) to y
(`−1)
ij5 on the observations with yij4 = 0 and using

predictors x
(`)
5 .

(c) Sample θ
(`)
5 from its posterior distribution.

(d) For each observation with Mij5 = 1, impute yij5 using equation (7.9b), θ
(`)
5 and

y
(`)
ij4 to create y

I(`)
ij5 .

6. For each observation with E4 = 1, jointly edit (yij4, yij5) using algorithm (6.8), θ
(`)
4

and θ
(`)
5 to create (y

E(`)
ij4 , y

E(`)
ij5 ).

(a) Create y
(`)
ij4 and y

(`)
ij5 using equation (7.11).

(b) Calculate y
∗(`)
4 and y

∗(`)
5 for use in Step 1.

This cycle repeats for ` = 2, . . . , L iterations on each of s chains using appropriate burn-in

and thinning values.
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Students Surveys

Total N 26,851 36,573

High School N 19,079 23,796

Gender (Y1) Missing nmis1 245 -

Inconsistent nerr1 57 -

Birthplace (Y2) Missing nmis2 194 -

Inconsistent nerr2 170 -

Ever had Sex (Y3) Missing nmis3 - 1,971

Inconsistent nerr3 248 -

Utilization (Y4) Missing nmis4 3,047

Knowledge (Y5) Missing nmis5 2,898

IMV (Y4, Y5) Inconsistent nerr4 730

Table 7.4: Sample size and amount of missing and erroneous data for the second SyBRMICE

example. Total is middle and high school combined.

7.3.3 Modeling Results

Table 7.4 shows the sample sizes and amount of missing and inconsistent values for the

outcome variables in this example. This example uses data from 36,573 surveys from 26,851

students in both middle and high school. Of these nmis1 = 245 are missing all responses for

gender, with nerr1 = 57 reporting their gender inconsistently. Another nmis2 = 194 students are

missing all responses for birthplace, with nerr2 = 170 reporting their birthplace inconsistently.

There are nmis3 = 1, 971 surveys missing data on if they have ever had sexual intercourse,

and nerr3 = 248 reported an inconsistent monotone response pattern. Of 23,796 surveys from

high school students, nerr3 = 730 surveys have an inconsistent combination of utilization and

knowledge of the CAP.

Then a variety of simulations were run as testing blocks to determine the thinning, R

and Rx values necessary to achieve convergence, suitable mixing, and low autocorrelation.
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Phase 1 was run on 5 chains for 500 iterations per chain with R = 30, Rx = 100 and a thin

of 10. This was done to assess computation time and to allow the M-H proposal variances

to adapt.

Phase 2 of the SyBRMICE algorithm consisted of L = 2, 000 iterations with R = 30, Rx =

100 and a thin of 10 on each of s = 5 chains producing a final posterior sample size of

ñ = 1, 000. Convergence diagnostic plots are displayed in Chapter Appendix figures 7.5 –

7.9 (a) – (d), and indicate good mixing, low autocorrelation and smooth posterior densities.

Tables 7.5 – 7.10 give a summary of the posterior distribution for the modeled parameters.

For the IRM models on Y1 and Y2, probabilities (p in italics) for the intercepts and Odds

Ratios (OR) for all other covariates with corresponding 95% intervals are reported. The

parameter estimates for the probit regression models on Y4 and Y5 remain untransformed.

The point estimates and 95% intervals for the regression parameters for the ILR gender

model are nearly identical to those in Chapter 4. Carrying a weapon in the 30 days prior

to the survey date, fighting in the past year, knowing about and getting a condom from the

CAP at any point during the study was associated with being Male. For both genders as

age increases, the odds of reporting being female decreases.

The point estimates and 95% intervals for the regression parameters for the ILR model

on birthplace are slightly different than those seen in Chapter 4. This is in part because the

regression coefficients differ between the two models. Earlier the model of true birthplace

was only modeled using ethnicity as three indicator variables with no intercept. This model

is reference coded, where Hispanic is the reference group.

The probability of a Hispanic/Latino student who never reported knowing about or getting

a condom from the CAP being born in the US is .736 (.722, .749). African-American and

Other ethnicity students have 10.1 (7.8, 13.2) and .469 (.427, .517) respectively times the

odds of Hispanics of being born in the US. The large odds ratio that an African American

student is born in the US compared to a Hispanic/Latino student is comparable with the

observed OR of 7.7 as calculated on the complete cases as displayed in Table 7.7.

Reporting utilizing the CAP anytime during the study is not significantly associated

120



Parameter Est SD OR/p 2.5% 97.5% p(θ1k > 0|Y )

Model of true female gender

Intercept =0.10 0.04 0.475 0.457 0.492 0.003

Carried a weapon =0.95 0.05 0.385 0.347 0.425 <0.001

Fought past 12mo =0.27 0.03 0.763 0.719 0.811 <0.001

Average utilization =0.76 0.16 0.467 0.344 0.631 <0.001

Average knowledge =0.38 0.07 0.682 0.593 0.780 <0.001

Models for reporting female gender

Females

Intercept 5.38 0.18 0.995 0.994 0.997 1.000

Age (standardized) =0.34 0.20 0.711 0.487 1.022 0.036

Males

Intercept =5.79 0.23 0.003 0.002 0.005 <0.001

Age (standardized) =0.33 0.21 0.719 0.471 1.065 0.062

Table 7.5: Summary of the posterior distributions for the regression coefficients used in the

model of true gender. Odds Ratios (OR) or probabilities (p in italics) with corresponding

95% posterior intervals are included.

with place of birth, but students who reported knowing that they could get a condom from

someone on their high-school campus at least once during the study had 2.45 (2.02, 3.02)

times the odds of being born in the US than those who did not know about the CAP. The

probability of accurately reporting birthplace decreases as age increases for those born in

the US, and increases with age for those born elsewhere. Females are more likely than males

to correctly report birthplace.

The point estimates and 95% intervals for the regression parameters for the IML response

model of lifetime sexual experience are similar to those in Chapter 5. A Hispanic male student

who was born in the US and entered the Project Connect study at 14.9 years old (the average)

is expected on average to have engaged in sexual intercourse by the 10.08 + .019(14.9) =
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Parameter Est SD OR/p 2.5% 97.5% p(θ1k > 0|Y )

Model of true US born

Intercept 1.025 0.036 0.736 0.722 0.749 1.000

African-American 2.316 0.135 10.14 7.837 13.188 1.000

Other =0.757 0.048 0.469 0.427 0.517 <0.001

Average utilization 0.401 0.207 1.494 1.008 2.242 0.976

Average knowledge 0.902 0.084 2.465 2.045 2.870 1.000

Models for reporting US birthplace

US Born

Intercept 4.645 0.183 0.990 0.987 0.993 1.000

Age (standardized) =1.374 0.160 0.255 0.186 0.347 <0.001

Female 0.401 0.166 1.493 1.091 2.096 0.994

Foreign Born

Intercept =3.043 0.171 0.046 0.033 0.061 <0.001

Age (standardized) =0.931 0.113 0.394 0.316 0.491 <0.001

Female =0.793 0.240 0.453 0.281 0.721 0.002

Table 7.6: Summary of the posterior distributions for the regression coefficients used in the

model of true birthplace. Odds Ratios (OR) or probabilities (p in italics) with corresponding

95% posterior intervals are included.

10.4th grade.

Many of the point estimates and 95% intervals for the regression parameters for the IMV

response model on CAP utilization in Table 7.9 are similar to those seen in Table 7.2. Now

African-American students are seen to have a significantly lower probability of knowing about

the CAP compared to Hispanics, and as age increases the probability that the student will

know about the CAP also significantly increases.

Some difference is seen between the two examples in the estimates and 95% intervals for

the regression parameters on CAP Knowledge given no utilization. Specifically the estimate
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Foreign Born US Born

Hispanic 4408 15895

African-American 111 3085

Table 7.7: Cross tabulation of ethnicity and birthplace.

Parameter Est SD 2.5% 97.5% p(θqk > 0|Y )

Intercept 10.080 0.269 9.558 10.653 1.000

African-American =0.858 0.076 =1.002 =0.706 <0.001

Other 0.645 0.075 0.502 0.798 1.000

Age at Entry 0.019 0.017 =0.016 0.051 0.867

Female 0.882 0.045 0.794 0.969 1.000

US Born =0.023 0.065 =0.147 0.106 0.378

σ 2.696 0.048 2.603 2.785 1.000

Table 7.8: Summary of the posterior distributions for the regression coefficients and variance

parameter Sigma used in the model of grade at first sex.

for African-American did not change by much (was -.065 (-.133, .002)), but the parameter

is no longer significant with a p-value of .064 compared to .028 from Example 1. While the

difference in p-values itself is not significant, researchers who hold a hard line on anything

less than .05 being significant, these are different results. The estimate for ever having sex

is not significant with a p-value of .56, when in Example 1 this estimate was significantly

greater than 0 (p-value > .999).

I reconsider the same covariate profiles as examined earlier and compare the fitted proba-

bilities of knowing about and utilizing the CAP from this model to the one in Example 1. A

foreign born, African-American male student who has had sex, attends a control high-school

school without a school based health center and is 14.9 years old (average age of HS students)

has a .01 (.007, .012) probability of getting a condom from the CAP. This is lower than the

123



Parameter Est SD 2.5% 97.5% p(θqk > 0|Y )

Intercept -2.601 0.033 -2.666 -2.538 <0.001

African-American -0.099 0.031 -0.161 -0.038 <0.001

Other 0.077 0.029 0.017 0.131 0.993

Age (standardized) 0.791 0.021 0.750 0.835 1.000

SBHC 0.789 0.021 0.748 0.830 1.000

Intervention 0.023 0.020 -0.016 0.061 0.880

Female -0.137 0.019 -0.173 -0.100 <0.001

US Born 0.132 0.024 0.088 0.182 1.000

Ever had sex 0.358 0.018 0.324 0.391 1.000

Table 7.9: Summary of the posterior distributions for the regression coefficients used in the

model of true utilization of the CAP.

estimated probability of .063 from Example 1. Similarly a 14.9 year old Hispanic girl from

Los Angeles attending an intervention high school that has a school based health center but

has not had sex has a .49 (.47, .51) probability of knowing about the CAP at her high school.

This is modestly lower than the estimated probability of .53 from Example 1.

7.3.4 Multiple Editing and Multiple Imputation Results

To create the Multiply Edited and Multiple Imputed MEMI data sets, 20 samples were

drawn from the posterior samples of all regression coefficients and imputed/edited values.

This was done by randomly sampling 20 values from 1 to L and pulling all model results for

those iterations.

Table 7.11 – 7.14 show the original response pattern, and the subsequent imputed and/or

edited data for a sample of observations subject to missing and/or inconsistent data. These

tables show how SyBRMICE can produce different edited or imputed values across MEMI

data sets, demonstrating the between MEMI variance that is incurred as part of the stochastic
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Parameter Est SD 2.5% 97.5% p(θqk > 0|Y )

Intercept -1.060 0.031 -1.124 -1.000 <0.001

African-American -0.048 0.032 -0.109 0.013 0.064

Other 0.149 0.032 0.085 0.210 1.000

Age (standardized) 0.071 0.016 0.037 0.102 1.000

SBHC 0.778 0.020 0.739 0.819 1.000

Intervention 0.183 0.020 0.143 0.223 1.000

Female -0.087 0.019 -0.121 -0.050 <0.001

US Born 0.159 0.022 0.117 0.200 1.000

Ever had sex 0.002 0.011 -0.021 0.023 0.560

Table 7.10: Summary of the posterior distributions for the regression coefficients used in the

model of true knowledge of the CAP given no utilization.

editing and imputation process.
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ID Raw MEMI #1 MEMI #2 MEMI #3 MEMI #4 MEMI #5 Total F

1 FMFF F F F F F 20/20

2 M.F F F M F M 14/20

3 M.F M F M F F 11/20

4 MF M M M M F 6/20

5 FMM M M M M M 0/20

Table 7.11: Edited and imputed values from five of MEMI data sets for five students with

observed inconsistent longitudinal reports of gender. The total column shows how many

times the student was edited to be Female. A value of . indicates a missing value.

ID Raw MEMI #1 MEMI #2 MEMI #3 MEMI #4 MEMI #5 Total US

6 FUs US US US F US 18/20

7 UsUsF F US US US US 15/20

8 FFUs F US US F F 9/20

9 UsFF US F F F US 8/30

10 UsFFUs F F F F F 1/20

Table 7.12: Edited and imputed values from five MEMI data sets for five students with

observed inconsistent longitudinal reports of birthplace. The total column shows how many

times the student was edited to be born in the USA. F = Foreign Born, Us = US Born
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ID Grade Raw I1 MEMI #1 MEMI #2 MEMI #3 MEMI #4 MEMI #5

11 10 0 1 1 0 0 0

11 1 1 1 0 0 0

12 0 1 1 0 1 1

12 10 .M 0 1 0 0 0

11 .M 1 1 0 1 0

12 .M 1 1 0 1 1

13 9 0 0 0 1 0 0

10 .M 0 0 1 0 0

11 1 1 0 1 1 0

12 0 1 1 1 1 0

14 6 0 0 0 0 0 0

7 1 0 0 0 1 0

8 .M 1 0 0 1 0

9 1 1 1 0 1 0

Table 7.13: Edited and imputed values from five MEMI data sets for five students with

observed inconsistent longitudinal reports of ever having sex. A value of .M indicates a

missing value, 0 = No sexual intercourse, 1 = Had sexual intercourse
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Table 7.15 provides a full comparison of the different methods to estimate various pro-

portions of interest in this dissertation, namely the % Female, % US Born, % Had sex, %

Utilized the CAP, % Knew about the CAP given they reported no utilization, and the three

valid cell percentages for the combination of utilization and knowledge. The complete case

estimates for the percent female, and percent born in the USA, are calculated by averaging

across students the first observed value from the students with consistent reporting patterns.

These percentages then can be interpreted as the percent of students who are female, and the

percent of students born in the USA. In contrast, the complete case estimates for ever had

sex, knowledge and utilization are calculated by averaging across all complete and consistent

survey responses. These percentages then represent the percent of surveys where a “Yes”

response was provided to the variable of interest.

The top two rows in Table 7.15 display the percentages calculated from the complete

cases, and the deterministically edited or imputed values used in the Project Connect data

set. The bottom three rows are the percentages of interest with corresponding 95% Intervals

calculated under all the different multiple editing and multiple imputation models presented

in this dissertation. Across the board the point estimates differ at most by around 5%

across calculation methods. For a sample of size 30,000, 5% represents a difference of 1,500

observations.

The % Female calculated under both the deterministic edit and the IRM model edit was

56.3%, but the IRM model provides a confidence interval of (55%, 57.5%). The SyBRMICE

procedure estimated the % Female at 55.0% (54.5%, 55.5%) and the complete case analysis

came in lowest with 54.3%. The US born complete case percentage is 79.1%, which is close

to the SyBRMICE estimate of 80.6% (80.0%, 81.1%) with the IRM model resulting in a

higher estimated percent born in the US at 82.0% (81.0%, 83.0%). Project Connect had no

deterministic edit for an inconsistently reported birthplace.

The IML model for the % of surveys where a student reports ever having sexual intercourse

is higher than both the complete case and SyBRMICE estimates at 34.8% (34.3%, 35.3%) for

the IML model, 33.9% for the complete cases and 33.7% (33.1%, 34.2%) for the SyBRMICE

model. Project Connect had no deterministic edit for inconsistent monotone longitudinal
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reports of ever having sex. Analyses to assess the intervention effect on the age at first sex

excluded the inconsistent records.

The percent utilizing the CAP varies more across the different calculation methods than

for knowledge of the CAP. An interesting thing to note is that while the complete case % Util

differs from the deterministically calculated percent by nearly 3%, (17.0% vs. 13.7%), the

% Know does not change much (40.9% vs. 41.5%) and the three valid cell percents also differ

by 1% or less. All MEMI models estimates for % Util are closer to the deterministic editing

percent than they are to the complete case analysis estimate.
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7.4 Model Inference Comparison

This section assess the impact missing and inconsistent data can have on model inference. I

fit a model that uses all the variables under consideration in this dissertation. I fit two models

on the complete case (CC) data set, the Project Connect deterministically edited (DE) data

set, and on each of the 20 MEMI data sets created from the SyBRMICE procedure. Model

results from the MEMI data sets are combined and compared to the results from the CC

and DE analyses.

The model was chosen to be similar to analyses performed by Project Connect researchers

to assess the impact of the intervention on the likelihood a student would know about, or

get a condom from the CAP. The models are not identical to any results published on this

data, nor am I comparing my results directly to published results. Knowledge of the CAP is

fit using the entire sample and utilization of the CAP is fit on the n0 surveys from sexually

experienced students only.

I fit two separate hierarchical logistic regression models (7.20), and (7.23) using MCMCglmm

that includes a student level random effect to account for the repeated measures on some

students. Predictor variables are ethnicity (AA, OTH), age (AGE), presence of a school-

based health center (SBHC), intervention status (INTERV), gender (FEMALE), birthplace

(US) and categorical study wave (T2, T3, T4). The model for knowledge also includes an

indicator of ever having had sex (SEXP).

At this point I need to pause and explain how MCMCglmm handles logistic models. Had-

field (2010a) has structured the program to always include an over-dispersion parameter in

generalized linear models

E[y] = expit(Xβ + e).

When the data is Bernoulli, the value of the residual variance e is not defined and most other

generalized linear mixed model packages in R fix e at 0, reducing the model to the standard

logistic model. However, Hadfield (2010a) states that this is an arbitrary choice, and that

the over dispersion parameter to allow the residual variance itself to vary, is the default. In

addition MCMCglmm algorithm will not properly mix under this assumption (Hadfield, 2010b).
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To work around this the residual variance was fixed at 1 as suggested by Hadfield (2010b,a).

The probability p(yij4 = 1) = πij4 of a student reporting that they know they can get a

condom from someone on campus is modeled using a logistic regression with predictors X
′
ij

and a random intercept ζi4 for each student.

yij4|πij4 ∼ Bernoulli(πij4)

logit(πij4) = X
′

ijα + ζi4,
(7.20)

with priors

ζi4 ∼ N (0, σ2
4)

σ2
4 ∼ IG(.001, .001),

(7.21)

for i = 1, . . . , n and j = 1, . . . ,mj, and

Xij = (1, AA, OTH, AGE, SBHC, INTERV, FEMALE, US, SEXP, T2, T3, T4)
′
),

α ∼ N
(

(−2, 0, 0, 0, 1, .5, 0, 0, .5, 0, .5, .5)
′
,
18415

25
(X

′

kXk)
−1
)
,

(7.22)

and where Xk is the covariate data matrix with rows x
′

ij for the model of knowledge from

the complete cases. The model for utilization of the CAP is fit on the n0 surveys where

SEXP=1. For the complete cases n0 = 8, 246, across the 20 MEMI data sets n0 ranges from

11,234 to 11,278.

yij5|πij5 ∼ Bernoulli(πij5)

logit(πij5) = W
′

ijβ + ζi5,
(7.23)

with priors

ζi5 ∼ N (0, σ2
5)

σ2
5 ∼ IG(.001, .001),

(7.24)

for i = 1, . . . , n0 and j = 1, . . . ,mj, and

Wij = (1, AA, OTH, AGE, SBHC, INTERV, FEMALE, US, T2, T3, T4)
′
),

β ∼ N
(

(−3, 0, 0, 0, 2, .5, 0, 0, 0, .5, .5)
′
,
8246

25
(W

′

uWu)
−1
)
,

(7.25)
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and where Wu is the covariate data matrix with rows w
′

ij for the model of utilization from the

complete cases of surveys on sexually experienced students. A weak proper prior is placed

on the variance of the random effects for both models σ2
4 and σ2

5.

For the MEMI models the imputed and edited value for gender z1 is used instead of the

response value for FEMALE, similarly for US and SEXP. The prior means were specified to

reflect the belief that there is a low probability of knowing about or utilizing the CAP, but

having an SBHC, being in the intervention condition, having had sex, and during study years

T3 and T4 increase this probability. The prior variances are calculated from the complete

case data, but the same prior is used regardless of which data is being used in the model.

7.4.1 Results

Tables 7.16 and 7.17 display the sample size and frequency of predictors for the model on

utilization and knowledge, respectively, under the complete cases, deterministically edited

data set, and the MEMI data sets. Frequencies and percents that vary across MEMI data

sets are presented in bold italics. The model for knowledge is fit on all 23,796 surveys from

high school students from the MEMI data sets, 18,415 (77.4%) complete cases, and 19,736

(82.9%) surveys from the deterministically edited data set. Since SEXP was multiply edited

and imputed, the sample size for the MEMI data sets used to fit the model for Utilization

ranges from 10,988 – 11,068 surveys, compared to 8,246 complete cases and 8,976 in the DE

data set. Both models were run for 53,000 iterations with a burn-in period of 3,000 and a

thin of 20, resulting in a final sample size of 2,500.
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Table 7.18 and 7.19 present the results for the regression models on knowledge and uti-

lization of the CAP respectively. Estimates, standard errors and p-values are displayed for

both complete case and MEMI analyses. For both models the standard errors are smaller

for the MEMI results than for either the complete case or deterministic edited results. This

is in part due to the increase in sample size. For nearly all coefficients the MEMI estimate

is smaller than the CC or DE estimate, but mostly the inference about the parameters do

not change. The cases where inference changes are discussed later.

Also presented in these tables are the number of standard deviations the MEMI estimate

is from the CC and DE estimates. For example the the MEMI parameter estimate for the

effect an SBHC has on a student’s knowledge of the CAP was 5.9 CC standard deviations

lower than the CC estimate, and 4.7 DE standard deviations lower than the DE estimate.

Most of the parameter estimates in the model of CAP knowledge differ between the two

methods by over 1 standard deviation. However the indicators for T3 and T4 had a change in

significance level. The percent of students in the complete case data set who knew about the

CAP is 47.0% in T4 and 41.5% in T1, and this difference is significant (p = .003). Averaged

across all MEMI data sets, these percents are 42.7% in T4 and 39.6% in T1, and are not

significantly different (p = .389) after adjusting for other covariates. Similarly the percent

of students in the deterministically edited data set who knew about the CAP is 44.0% in T3

and 40.4% in T1, and this difference is significant (p < .001). Averaged across all MEMI data

sets, these percents are 43.4% in T4 and 39.6% in T1, and are not a significantly different

(p = .400) after adjusting for other covariates.

Utilization parameter estimates of the intercept, presence of an SBHC, and study wave

indicators in table 7.19 differ noticeably between the two models, however the only changes

in significance interpretations occurred for the effects of wave (T2, T3 and T4). Waves T3

and T4 significantly differed from T1 when considering the observed, consistent cases. All

three wave indicators differed from T1 when considering the deterministically edited data

sample, but all three were not significantly different from T1 after multiply imputing and

editing the missing and inconsistent data. Likely this is due to the increase in sample size

of surveys on sexually experienced students for T3 and T4 compared to T1.
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7.5 Discussion

This chapter presents an all-inclusive example of how to take multiple variables subject to

missing and/or inconsistent data and multiply edit and impute all data in a cyclical manner

to produce multiple complete and consistent MEMI data sets. Results from subsequent

analyses on the MEMI data sets can be combined to produce estimates and intervals that

account for uncertainty in the imputation and editing processes.

The sample percentages in Table 7.15 clearly show the effect different imputation and

editing procedures can have on these estimates. The model results comparison showed how

compounding the effects of missing and inconsistent data not only in the outcome variable

but also in the predictor variables can change model inferences. If there had been a lack

of huge differences in this analysis it would not mean that the concept of multiply editing

inconsistent data in a stochastic manner similar to multiple imputation shouldn’t be done,

just that the nuances and errors a data manager or analyst might notice did not create a

large enough problem for this particular massive and complex data set.

7.A Convergence Diagnostic Plots

Figures 7.3 – 7.4 display the trace, density, autocorrelation and Gelman-Rubin-Brooks diag-

nostic plots for the regression model parameters from the utilization and knowledge models

respectively in the first example. Figures 7.5 – 7.9 display these same plots to assess model

convergence for each of the 5 regression models in the second SyBRMICE example.

Plot (a) in each figure are the trace plots, which show that the chains are mixing well.

Plot (b) plots the posterior densities of the model parameters, each one indicating that

enough samples have been taken to create a smooth and approximately normally distributed

posterior density. Plot (c) shows that the autocorrelation between subsequent samples after

a thin of 20 is low enough to not be of concern, and plot (d) shows that the Gelman-Rubin-

Brooks diagnostic plots indicate adequate convergence since the median value is around

1.
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Figure 7.3: Trace and density plots for the utilization regression coefficients from example

1 in section 7.2.4. Prior densities are drawn in grey, each chain has its own color and the

average density is drawn with a thick black line.
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Figure 7.4: Trace and density plots for the knowledge regression coefficients from example

1 in section 7.2.4. Prior densities are drawn in grey, each chain has its own color and the

average density is drawn with a thick black line.
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Figure 7.5: Convergence diagnostic plots for the IRM Gender regression parameters in the

full SyBRMICE model.
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Figure 7.6: Convergence diagnostic plots for the IRM Birthplace regression parameters in

the full SyBRMICE model.
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Figure 7.7: Convergence diagnostic plots for the IML grade at first sex regression parameters

and variance Sigma in the full SyBRMICE model.
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Figure 7.8: Convergence diagnostic plots for the IMV Utilization regression parameters in

the full SyBRMICE model.
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Figure 7.9: Convergence diagnostic plots for the IMV Knowledge regression parameters in

the full SyBRMICE model.
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CHAPTER 8

Conclusion

This dissertation introduced methods to multiply-edit inconsistent and erroneous data us-

ing methods similar to how missing data is treated under a multiple imputation framework.

Uncertainty from the editing method is correctly propagated into the variance of the final re-

sults. The additional steps required to multiply-edit inconsistent data on top of a pre-existing

multiple imputation procedure include needing to specify a model for the misspecification.

In Chapter 4 I demonstrated how to jointly impute and edit inconsistent repeated mea-

sures (IRM). These erroneous responses occur when the responses to the same question asked

repeatedly over time differ across the multiple responses, when there really is only a single

true response to that question that does not change over time. Examples were inconsistent

reports of gender and of birthplace. The IRM model used a latent variable approach, but

was seen to be computationally intensive. This likely is due more to an inefficient sampling

routine than to structural problems in the model itself.

The model introduced in Chapter 5 looked at another type of inconsistent longitudinal

response. The underlying true values either remain constant across time, or are allowed to

change only once, and in a specific direction. I modeled the reports of ever having sexual

intercourse, where consistent reporting patterns included always saying no, always saying

yes, or saying no and then at some change point saying yes. The time to change point

was modeled using an interval censored survival model and used to jointly impute and edit

missing and inconsistent responses.

Chapter 6 introduced methods to impute and jointly edit inconsistent multivariate re-

sponses between two binary variables where a specific combination of responses gives mis-

matched or conflicting information. The variable combination I modeled was the reported
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knowledge of and utilization of the Condom Availability Program on high school campuses

and the inconsistent combination was a report of not knowing about the CAP but getting a

condom from the program.

Lastly, in Chapter 7 I combined the repeated measures models, the longitudinal models

and the multiple response models with the cyclical framework of SRMI (Raghunathan et al.,

2001) to create SyBRMICE, a Sequential Bayesian Regression Model for Imputation and

Conditional Editing. This example demonstrated that the SyBRMICE procedure extends

easily to include any number of variables that may be subject to missing and/or inconsistent

data. Furthermore, these multiple editing methods allow for the entire sample to be included

in subsequent analyses.

Whether it be imputing missing data or editing inconsistent data, changing the data from

its raw values will give you different results than what would be seen from the raw data.

Especially with missing data, complete case analysis can give biased results when the missing

data mechanism is not ignorable (Little and Rubin, 2002). Since inconsistent data occurs

in so many forms, and the methods to change the incorrect data can be just as variable,

there is no theoretical way to pre-determine if changing the data will give you significantly

different estimates.

Some differences in the results from a regression model using the deterministically edited

data and the multiply edited and multiply imputed data sets were seen here. Just as it

is necessary to account for the error incurred by the imputation process, it is necessary to

account for the error incurred from editing procedures.

Future work and extensions to the ideas presented in this dissertation could include the

following. A prior distribution could be placed on the probability of making an error (π) in

the IMV models of Chapter 6. A new method for the inconsistent monotone editing rules

could be created to ensure minimal changes are made to the observed data rather than just

sampling a new observation and completely ignoring the inconsistent data. Individuals with

a lot of reporting errors and/or missing data could be flagged using some sort of criteria

based on how variable their MEMI results are. This flag would indicate a need for further
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examination to determine if they should be excluded from the data set entirely. The IMV

framework could be used to model inconsistent monotone responses between two time points,

and also extended to model more than two dichotomous variables.

Some may think that as we move more into the age of “Big Data”, paper surveys and

the lack of ability to enforce skip patterns and logical constraints will be a thing of the past.

Survey deployment technology has come a long way from paper and pencil. There are a

number of hand held devices specifically for field-survey use, but for the common researcher

on a small to mid-sized grant these are may be unavailable. There are some free or relatively

inexpensive methods to collect data on the web, but that requires a moderately tech-savvy

person to correctly program and to administer. Nothing can, and likely ever will, beat the

tried and true method of writing a survey in a word processing program and printing out

copies for administration. This is especially the case in a school setting where you cannot

depend on an internet connection, and there are heavy risks involved in bringing crates of

electronic survey devices onto a school campus.

There will always be those who choose to falsify information to some extent regardless of

how simple, easy and effective electronic surveys are to use. We can control electronics, but

we can never control human nature. We can only edit and analyze their responses.
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Codebook

Table A.1: Codebook for Section A: Demographics

Variable Description Values Responses

A1. Are you Male or Female? 0 Male

1 Female

A2. In what month were you born? 1 January
...

...

12 December

A3. In what year were you born? Middle School

1988-1995

High School

1984-1991

A4. How old are you? Middle School

10-14

High School

13-20

continued on next page
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Variable Description Values Responses

Mark all of the following that best describe you (A7)

A71 African American/Black 0 Unmarked

1 Marked

A72 Asian or Pacific Islander 0 Unmarked

1 Marked

A73 Hispanic/Latino 0 Unmarked

1 Marked

A74 Native American/American Indian 0 Unmarked

/American Eskimo 1 Marked

A75 White/Caucasian 0 Unmarked

1 Marked

A76 Other ethnicity 0 Unmarked

(write-in allowed) 1 Marked

A9. Where were you born? 1 United States

2 Mexico

3 El Salvador

4 Guatemala

5 China

6 The Philippines

7 Korea

(write-in allowed) 8 Somewhere else
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Table A.2: Codebook for Section I: Sexual Activity

Variable Description Values Responses

I1. Have you ever had sexual 0 No

intercourse? 1 Yes

I2. How old were you when you Middle School

had sexual intercourse S I have never had sex

for the first time? 10 10 years old or younger
...

...

15 15 years old or older

High School

S I have never had sex

10 10 years old or younger
...

...

17 17 years old or older

I3. In what month did you S I have never had sex

have sexual intercourse 1 January

for the first time?
...

...

12 December

*HS Only continued on next page
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Variable Description Values Responses

I4. In what year did you have Middle School

sexual intercourse for the S I have never had sex

first time? 1999-2005

High School

S I have never had sex

1994-2005

I5. With how many people have S I have never had sex

you ever had 1 1 person

sexual intercourse? 2 2 people

3 3 people

4 4 people or more

I6.* In the last 3 months, have 0 No

you had sexual intercourse? 1 Yes

*HS Only continued on next page
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Variable Description Values Responses

The last time you had sexual intercourse, did you or your partner use

any of the following? Please check all that apply. (I7)

I71 Condoms 0 Unmarked

1 Marked

I72 Birth control pills 0 Unmarked

patch or ring 1 Marked

I73 Birth control shots 0 Unmarked

1 Marked

I74 Emergency contraception 0 Unmarked

(morning after pill, plan B) 1 Marked

I75 Withdrawal (pull out) 0 Unmarked

1 Marked

I76 Rhythm method 0 Unmarked

(safe time of the month) 1 Marked

I77 Something else 0 Unmarked

1 Marked

I78 Nothing 0 Unmarked

1 Marked

I70 I have never had sexual intercourse 0 Unmarked

1 Marked

*HS Only continued on next page
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Variable Description Values Responses

I8.* Was the last person you had sexual intercourse with someone who

you consider a steady or casual partner?

1 It was a steady partner

2 It was a casual partner

S I have never had sex

I9.* Counting all of the times you had sexual intercourse in the

last 3 months, how often did you or your partner use a condom?

0 Never

1 Less than half the time

2 About half the time

3 More than half the time

4 Always

S I have not had sex

in the last 3 months

I10.* In the last 3 months, have you had sexual intercourse with someone

that you have never had sexual intercourse with before?

0 No

1 Yes

*HS Only continued on next page
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Variable Description Values Responses

I11. Have you ever given or received

oral sex?

1 Yes, given only

2 Yes, received only

3 Yes, both

0 No

K I don’t know what

oral sex is (Added T2)

I12.* In the last 3 months, have you

given or received oral sex?

1 Yes, given only

2 Yes, received only

3 Yes, both

0 No

K I don’t know what

oral sex is (Added T2)

I13.* Have you ever had anal sex? 0 No

1 Yes

I14.* In the last 3 months, have you

had anal sex?

0 No

1 Yes

I16. With whom have you had any 1 Males only

kind of sexual activity? 2 Females only

3 Males and females

S I have never had any

S kind of sexual activity

*HS Only
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Table A.3: Codebook for Section E: School Based Health Center

Variable Description Values Responses

E1.* Does your school have a health care clinic? This clinic also

might be called the “teen clinic”. It is different from

the school nurse’s office 0 No

1 Yes

E2.* Have you ever gone to the 0 No

teen clinic at your school? 1 Yes

What have you gone to the teen clinic at your school for?

Please mark yes or no for EACH question (E3)

E3a.* Immunizations 0 No

(shots) 1 Yes

E3b.* A check-up or sports physical 0 No

1 Yes

E3c.* Sickness 0 No

(like a fever or infection) 1 Yes

E3d.* An injury 0 No

(like a broken bone or cut) 1 Yes

*HS Only continued on next page
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Variable Description Values Responses

E3e.* Ongoing illness 0 No

(like asthma or diabetes) 1 Yes

E3f.* A check-up of my vagina or penis 0 No

1 Yes

E3g.* Birth control 0 No

1 Yes

E3h.* A test or treatment for a 0 No

sexually transmitted disease (STD) 1 Yes

E3i.* Counseling 0 No

1 Yes

E3j.* Information about sex 0 No

1 Yes

E3k.* Information about my health 0 No

1 Yes

E3l.* Something else 0 No

1 Yes

*HS Only continued on next page
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Variable Description Values Responses

What has kept you from using the teen clinic at your school?

Please check all that apply. (E4)

E41.* I didn’t feel comfortable 0 Unmarked

1 Marked

E42.* My parents didn’t give 0 Unmarked

permission 1 Marked

E43.* I didnt know where it was 0 Unmarked

or how to make an appointment 1 Marked

E44.* I thought Id have to pay 0 Unmarked

1 Marked

E45.* I wouldn’t want anyone to 0 Unmarked

know I went there 1 Marked

E46.* I don’t have any health 0 Unmarked

problems 1 Marked

E47.* I have my own doctor 0 Unmarked

1 Marked

E48.* Nothing has kept me from 0 Unmarked

using the teen clinic 1 Marked

*HS Only
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Table A.4: Codebook for Section G: Condom Availability Program

Variable Description Values Responses

G1 Does someone at your school (like the school nurse or a counselor)

give out condoms to students 0 No

who want them? 1 Yes

K Don’t know

Skip pattern text on survey removed after T1

Do any of the following people give out condoms at your school?

Please mark yes or no for EACH question(G2)

G2a. Health clinic staff or School Nurse 0 No

1 Yes

(Option added in T2) K Don’t know

G2b. An administrator 0 No

1 Yes

(Option added in T2) K Don’t know

G2c. Health Teacher 0 No

1 Yes

(Option added in T2) K Don’t know

G2d. A PE Teacher or Coach 0 No

1 Yes

(Option added in T2) K Don’t know

Continued on next page
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Variable Description Values Responses

Who gives out condoms?(G2) cont.

G2e. Someone else 0 No

1 Yes

(Option added in T2) K Don’t know

G2f. No one gives out condoms at my 0 No

school(Question added T2) 1 Yes

K Don’t know

G3. Have you ever gotten condoms 0 No

from this person at your school? 1 Yes

G4. In the past month, how many times have you gotten condoms

from this person at your school?

0 Never

1 One

2 Two

3 Three or more
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A.1 Sexual Activity Recode Rules

Table A.5: Deterministic editing rules currently applied to the sexual activity section of the

Project Connect survey data.

# Recode Rule

1 If I1 is M and I2 through I5 are all S then change I1 to No

2 If I1 is M and I2-I5 all M with at least one S then change I1 to No and I2-I5 to S

3 If I1-I5 all M, and I16 is S then change I1 to No and I2-I5 to S

4 If I1 is M and I2-I5 consist of a combination of non-missing and M then change I1 to

Yes

5 If I1 is M and I2-I5 consist of a combination of non-missing and S then change I1-I5

to M

6 If I1 is No and I2-I5 consist of a combination of non-missing and S then change I1-I5

to M

7 If I1 is No and at least 3 of I2-I5 are non-missing with the others missing then change

I1 to Yes

8 If I1 is No and I2-I5 all M then change I2-I5 to S

9 If I1 is No and I2-I5 all S or M with only one non-missing then change the non-missing

answer to S

10 If I1 is No and I2-I5 are all combinations of S and M then change I2-I5 to S

11 If I1 is Yes and any of I2-I5 is S then change I1-I5 to M

12 If I1 is Yes and I16 is S then change I16 to M

13 If I1 is Yes and I8 is S then change I8 to M

14 If I1 is Yes and I70 is marked then change I70 to Unmarked

15 If more than 5 of I71-I78 are marked then change I70 - I78 to M

16 If I72, I73 & I74 are all marked then change I70 - I78 to M

M = Missing, S = I have not had sex, K=Don’t Know, I = Inconsistent
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Table A.5: Deterministic editing rules currently applied to the sexual activity section of the

Project Connect survey data.

# Recode Rule

17 If I72 and I73 are both marked then change I70 - I78 to M

18 If I11 is M and I12 is Yes or K then change I11 to the matching Yes answer

19 If I11 is No and I12 is any of the Yes answers then change both to I

20 If one of I11 or I12 is K and the other one is a non-missing answer then change both

to I

21 If I11 is given only and I12 is received only or both then change both to I

22 If I11 is received only and I12 is given only or both then change both to I

23 If I13 is M and I14 is Yes then change I13 to Yes

24 If I13 is No and I14 is Yes then change both to I

25 If I6 is Yes and I9 is S or if I6 is No and I9 has a non-missing answer then change

both to I

26 If I2 is greater than the reported age then change I2 to M

M = Missing, S = I have not had sex, K=Don’t Know, I = Inconsistent
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