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Abstract 

Using Morphology and Structure to tune Solid-State Thermal Properties 

By 

Kedar Hippalgaonkar 

Doctor of Philosophy in Mechanical Engineering 

University of California, Berkeley 

Professor Costas Grigoropoulos, Chair 

 

Diffusive phonon transport in nanostructured materials has been a subject of intense 
interest and micro-fabricated platforms have been used to measure the thermal 
conductivity of nanowires.  In this work, we demonstrate how the limits of heat 
transport can be tested in three novel material systems by extending this platform to 
probe material structure and provide a direct correlation to their thermal properties.   

Phonons are lattice vibrations and their scattering in solids has largely been explained 
like collision of particles.  Since the development of nanostructures, diffusive 
boundary scattering from large surface-to-volume ratio materials has been studied in 
nanowires and superlattices.  To beat this diffusive scattering limit, we designed 
integrated silicon nanowires with rough surfaces with 30% reduction in thermal 
conductivity.  Subsequently, we took a significant step further by making 
nanostructures with broadband roughness close to the dominant phonon wavelength 
(1-10 nm) at room temperature.  The decrease in thermal conductivity of intrinsic 
silicon by a factor of ~30 from 140 W/m-K to 5 W/m-K in this sub-diffusive regime 
might be due to multiple scattering stemming from coherent phonon wave effects. 
Transmission Electron Microscopy (TEM) based techniques including three-
dimensional tomography were then used to map out the morphology and find that we 
can reduce the thermal conductivity to as low as 1 W/m-K, while preserving the 
single-crystalline core, which is as low as that amorphous silicon or silica.  Correlating 
the surface roughness and porosity to the measured thermal conductivity opens up a 
new paradigm to observing wave physics in thermal phonons at room temperature in 
nanomaterials. 

Secondly, the platform developed previously was extended to be compatible with 
TEM, allowing us to characterize the crystal structure of measured nanowires.  While 
phonon optics experiments in the 1970s showed a crystallographic direction dependent 
thermal conductivity, we performed the first 1-1 mapping of nanowire growth 
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direction and thermal conductivity in Bismuth Nanowires.  In the boundary scattering 
regime with diameter 100 nm, a nanowire in the 102!" #$  direction had k = 8.5 W/m-K, 

~6 times higher than a nanowire in the 110[ ]  direction with k = 1.5 W/m-K. 

Finally, this thesis also studies tapered Vanadium Oxide beams to study asymmetric 
phonon physics that manifest in temperature dependent thermal rectification.  The 
interplay between electrons and phonons and the possibility of asymmetric scattering 
rates prompted us to look closely at the existence of Metal-Insulator interfaces that 
could result in thermal rectification.  Between 150K and 340K, the VnO2n-1 phases 
could be either metallic or insulating with nanoscale domains.  We performed high 
resolution Auger spectroscopy on single-crystal Vanadium Oxide beams that show a 
stoichiometry variation and measured thermal rectification as high as 22%.  The 
rectification behavior turns off (<4%) once the whole beam reaches the insulating 
phase, higher than 340K. 

Our platform thus couples materials characterization, especially TEM, with thermal 
property measurement to enhance understanding of thermal phonons. 



 i 

In	  memory	  of	  Shri.	  Jagannath	  Rao	  Hippalgaonkar	  

	  

and	  	  

	  

Dedicated	  to	  my	  grandfather,	  Dr.	  Swanand	  Santpur  



 ii 

TABLE OF CONTENTS 
List	  of	  Figures	   	   	   	   	   	   	   	   	   	  	  	  	  iv	  

List	  of	  Tables	   	   	   	   	   	   	   	   	   	  	  	  	  	  x	  

Acknowledgements	   	   	   	   	   	   	   	   	  	  	  	  xi	  

	  

1	   HEAT	  TRANSFER	  IN	  SOLID	  STATE	  SYSTEMS	  ....................................................	  1	  

1.1	   INTRODUCTION	  ........................................................................................................................................	  1	  

1.2	   PHONONS	  ....................................................................................................................................................	  3	  
1.2.1	   CLASSICAL	  LATTICE	  VIBRATIONS	  ......................................................................................................	  3	  
1.2.2	   LATTICE	  STRUCTURE	  AND	  THE	  BRILLOUIN	  ZONE	  ..........................................................................	  5	  
1.2.3	   PHONONS	  ...............................................................................................................................................	  9	  
1.2.4	   PHONON	  STATISTICS	  AND	  HEAT	  CAPACITY	  .................................................................................	  11	  
1.2.5	   KINETIC	  THEORY	  OF	  GASES	  AND	  THERMAL	  CONDUCTIVITY	  ....................................................	  13	  
1.2.6	   BOLTZMANN	  TRANSPORT	  THEORY	  AND	  THE	  PARTICLE	  PICTURE	  ...........................................	  15	  
1.2.7	   BOSE-‐EINSTEIN	  DISTRIBUTION	  AND	  THE	  DOMINANT	  PHONON	  WAVELENGTH	  ...................	  21	  
1.2.8	   PHONON	  COHERENCE	  LENGTH	  .......................................................................................................	  24	  

1.3	   EXPERIMENTS	  PROBING	  PHONON	  LENGTH	  SCALES	  ..........................................................	  26	  
 

2	   THERMAL	  MEASUREMENT	  TECHNIQUE	  ..........................................................	  34	  

2.1	   THERMAL	  MEASUREMENT	  OF	  ONE-‐DIMENSIONAL	  STRUCTURES	  ..............................	  35	  

2.2	   IMPACT	  OF	  THERMAL	  CONTACT	  RESISTANCE	  ......................................................................	  38	  

2.3	   NOISE	  EQUIVALENT	  THERMAL	  CONDUCTANCE	  ...................................................................	  52	  

2.4	   MEASUREMENT	  PRACTICE	  ..............................................................................................................	  55	  

APPENDICES	  

2A	   ERROR	  ANALYSIS	  FOR	  THERMAL	  CONDUCTANCE	  MEASUREMENTS	  .........................	  57	  

2B	   PROBLEM	  OF	  PLATINUM	  SURFACE	  DIFFUSION	  .....................................................................	  62	  
 

3	   EFFECT	  OF	  MORPHOLOGY	  ON	  THE	  THERMAL	  CONDUCTIVITY	  OF	  
SILICON	  NANOWIRES	  .............................................................................................	  65	  

3.1	   INTRODUCTION	  .....................................................................................................................................	  66	  

3.2	   NANOWIRE	  SYNTHESIS	  AND	  ROUGHENING	  ...........................................................................	  68	  



 iii 

3.3	   MORPHOLOGY	  CHARACTERIZATION	  ..........................................................................................	  70	  

3.4	   THERMAL	  CONDUCTIVITY	  ...............................................................................................................	  75	  

	  

4	   OBSERVATION	  OF	  ANISOTROPY	  IN	  THERMAL	  CONDUCTIVITY	  OF	  
INDIVIDUAL	  SINGLE-‐CRYSTALLINE	  BI	  NANOWIRES	  ...................................	  84	  

4.1	   INTRODUCTION	  .....................................................................................................................................	  85	  

4.2	   NANOWIRE	  GROWTH	  AND	  MEASUREMENT	  ...........................................................................	  86	  

4.3	   ANISOTROPIC	  AND	  DIAMETER-‐DEPENDENT	  THERMAL	  CONDUCTIVITY	  OF	  
BISMUTH	  NANOWIRES	  ......................................................................................................................	  89	  

4.4	   TEMPERATURE	  DEPENDENCE	  OF	  THERMAL	  CONDUCTIVITY	  FOR	  BISMUTH	  
NANOWIRES	  ............................................................................................................................................	  94	  

4.5	   CONCLUSION	  ..........................................................................................................................................	  96	  

	  

5	   TEMPERATURE	  GATED	  THERMAL	  RECTIFIER	  ..............................................	  97	  

5.1	   INTRODUCTION	  .....................................................................................................................................	  98	  

5.2	   MATERIAL	  CHOICE	  AND	  CHARACTERIZATION	  ......................................................................	  99	  

5.3	   MEASUREMENT	  OF	  THERMAL	  RECTIFICATION	  .................................................................	  101	  
5.3.1	   THE	  GATE	  TEMPERATURE	  (TG)	  ADJUSTMENT	  .........................................................................	  102	  
5.3.2	   TEMPERATURE	  GATED	  THERMAL	  RECTIFICATION	  RESULTS	  ................................................	  103	  
5.3.3	   EFFECT	  OF	  GATE	  TEMPERATURE	  ON	  RECTIFICATION	  .............................................................	  105	  

5.4	   DISCUSSION	  AND	  ANALYSIS	  .........................................................................................................	  107	  

5.5	   CONCLUSION	  .......................................................................................................................................	  110	  

	  

6	   CONCLUSIONS	  AND	  OUTLOOK	  .........................................................................	  111	  
 

Bibliography	  	   	   	   	   	   	   	   	   	   114	  

	  



 
 

iv 

List	  of	  Figures:	  	  
	  
Figure	  1.1	  One	  Dimensional	  Spring	  Mass	  System	  ....................................................................................................	  3	  
Figure	  1.2	  One	  Dimensional	  Dispersion	  Relation	  for	  phonons	  ..........................................................................	  4	  
Figure	  1.3	  Crystal	  Structure	  of	  Cubic	  Silicon	  ..............................................................................................................	  5	  
Figure	  1.4	  First	  Brillouin	  Zone	  of	  a	  3D	  fcc	  crystal	  ....................................................................................................	  6	  
Figure	  1.5	  Two	  atom	  basis	  vibration	  system	  ..............................................................................................................	  7	  
Figure	  1.6	  Dispersion	  relation	  of	  silicon	  (adapted	  from	  the	  Dolling	  [2]).	  The	  zone	  center	  is	  the	  Γ-‐

point,	  while	  the	  L-‐	  and	  X-‐points	  are	  shown	  as	  described	  in	  the	  text.	  ....................................	  8	  
Figure	   1.7	   Specific	   heat	   at	   constant	   volume	   of	   crystalline	   Silicon.	   At	   low	   temperatures,	  Cv	  ∝	   T3	  

while	  at	  higher	  temperatures,	  Cv	  approaches	  the	  Dulong-‐Petit	  Limit.	  ...............................	  13	  
Figure	   1.8	  Motion	   of	   a	   particle	   carrying	  mass	   and	   energy	   across	   an	   average	   distance	    x 	  under	  

temperature	  gradient	  ΔT	  with	  a	  velocity	  in	  the	  x-‐direction	  given	  by	  vx	  ............................	  14	  
Figure	  1.9	  Vector	  Representations	  of	  Normal	  (N)	  and	  Umklapp	  (U)	  Phonon-‐Phonon	  Scattering	  ...	  18	  
Figure	   1.10	   (a)	   Specular	   Reflection	   where	   the	   incoming	   wave	   is	   reflected	   off	   the	   surface	   (b)	  

Diffusive	   scattering	  where	   the	   reflected	  wave	   loses	   it’s	  memory	   and	   can	   scatter	   in	  
any	  direction	  ................................................................................................................................................	  20	  

Figure	  1.11	  Reproduced	  from	  Esfargani	  et.	  al.,	  the	  accumulation	  of	  thermal	  conductivity	  in	  Silicon	  
at	  277K	  as	  a	  function	  of	  phonon	  wavelength	  is	  shown	  by	  the	  red	  curve	  [11].	  ...............	  23	  

Figure	  1.12	  (a)	  When	  the	  source	  waves	  are	  coherent	  and	  there	  exists	  a	   fixed	  phase	  relationship	  
between	  them,	  the	  superposition	  is	  a	  wavepacket	  with	  a	  finite	  coherence	  length	  (b)	  
When	   the	   source	   waves	   are	   incoherent,	   the	   superposition	   is	   a	   wavepacket	   with	   a	  
larger	  coherence	  length.	  [Wikimedia	  commons]	  ........................................................................	  25	  

Figure	  1.13	  Thermal	  Conductivity	  of	  Bulk	   Silicon	  as	   a	   function	  of	   temperature.	  The	  variation	   in	  
data	   in	   the	   intermediate	   temperature	   regime	   is	   mainly	   due	   to	   different	   impurity	  
concentrations,	   while	   the	   umklapp	   (high	   temperature)	   and	   boundary	   (low	  
temperature)	  dominated	  regions	  match	  up	  well.	  Figure	  from	  [30].	  ...................................	  27	  

Figure	   1.14	   Thermal	   conductivity	   of	   bulk	   Silicon	   for	   two	   extreme	   cases	   from	   polished,	   clean	  
surface	   to	   a	   sandblasted	   rough	   surface.	   The	   intermediate	   curves	   are	   for	   different	  
thicknesses	  of	  gold	  films	  deposited	  insitu	  on	  a	  clean	  Silicon	  surface.	  Figure	  from	  [31].
	  ...........................................................................................................................................................................	  27	  

Figure	   1.15	   Thermal	   Conductivity	   of	   Smooth	   Silicon	   Nanowires	   exhibiting	   diffusive	   boundary	  
scattering	  following	  the	  Casimir	  theory.	  Figure	  from	  [35].	  ....................................................	  28	  

Figure	   1.16	   (a)	   Comparison	   of	   thermal	   conductivity	   of	   rough	   EE	   Silicon	   Nanowires	   [36]	   and	  
smooth	   VLS	   Silicon	  Nanowires	   [35]	   	   (b)	   TEM	  picture	   of	   smooth	   VLS	  NWs	   (c)	   TEM	  
picture	  of	  rough	  EE	  NWs	  ........................................................................................................................	  29	  

Figure	  1.17	  (a)	  Phonon	   focusing	  as	   illustrated	  by	  McCurdy,	  Taylor	  et.	  al.	   [39]	  A	  deviation	  of	   the	  

group	  velocity	  directions	  given	  by	  
v from	  the	  phonon	  wavevectors	  


k allows	  focusing	  

of	  energy	   flow	   in	  directions	  perpendicular	   to	   the	  rod	  axis	  compared	  to	  an	   isotropic	  
solid.	   (b)	   Phonon	   Imaging	   showing	   different	   intensities	   of	   energy	   flux	   in	   different	  
directions	  in	  a	  Germanium	  crystal	  at	  ~2K.	  Image	  adapted	  from	  Northrop	  and	  Wolfe	  
[40]	  ..................................................................................................................................................................	  30	  



 
 

v 

Figure	  1.18	  For	  frequencies	  of	  the	  STJ	  phonons	  corresponding	  to	   λ = 2d ,	  the	  transmission	  drops	  
by	  ~80%.	  	  The	  device	  structure	  is	  shown	  in	  the	  inset.	  Figure	  adapted	  from	  [45]	  .......	  32	  

Figure	   2.1	  Microfabricated	   Thermal	  Measurement	   Platform	  with	   nanowire	   suspended	   between	  
the	  membranes.	  ..........................................................................................................................................	  35	  

Figure	   2.2	   Rs	   and	   Rh	   as	   a	   function	   of	   the	   heating	   current,	   Ih.	   Resistance	   is	   proportional	   to	  
temperature,	  which	   in	   turn	   is	   proportional	   to	   the	  power	   supplied	  by	   joule	  heating.	  	  
Thus,	  the	  resistance	  has	  a	  quadratic	  dependence	  on	  Ih	  ............................................................	  38	  

Figure	  2.3	  Thermal	  Contact	  Resistance	  Network	  ..................................................................................................	  39	  
Figure	  2.4	  (a)	  Silicon	  Nanowire	  suspended	  between	  the	  heating	  and	  sensing	  membranes	  (b)	  Same	  

Silicon	  Nanowire	  after	  Focused	  Electron	  Beam	  induced	  Pt/C	  deposition	  .......................	  40	  
Figure	   2.5	   (a)	   A	   representation	   of	   the	   typical	   geometry	   of	   nanowires.	   (b)	   Top	   view	   Scanning	  

Electron	   Micrograph	   of	   a	   rectangular	   cross-‐section	   nanowire	   geometry	   and	   Pt/C	  
Focused	   Ion	  Beam	   Induced	  Deposits	   (FIBID)	   to	   improve	   thermal	   contact	   resistance	  
and	   also	   provide	   electrical	   contact	   to	   the	   Platinum	   electrodes	   on	   the	   suspended	  
membranes.	  (c)	  Cross-‐section	  diagram	  of	  each	  of	  four	  contacts	  between	  the	  nanowire	  
(grey)	   and	   the	   Platinum	   Electrode	   (blue)	   on	   the	   suspended	   membrane,	   with	   the	  
interface	  (black).	  	  The	  length	  of	  the	  interface	  is	  defined	  as	  LI,	  and	  the	  overlap	  between	  
the	   nanowire	   and	   the	   Platinum	   Electrode	   is	   defined	   as	   Lc.	   Both	   rectangular	   and	  
circular	  cross-‐sections	  are	  illustrated.	  .............................................................................................	  41	  

Figure	  2.6.	  Thermal	  Contact	  Resistance,	  Rc	  estimated	  for	  a	  carbon	  nanofiber	  using	  Equation	  2.5	  for	  
LI	  varying	  from	  0.1nm	  (large	  dashed	  line)	  upto	  100nm	  (solid	  line)	  for	  different	  values	  
of	  kI	  (shown	  here	  as	  kcross-‐plane)	  reproduced	  from	  Yu	  et.	  al.	  [53]	  ............................................	  42	  

Figure	   2.7	   (a)	   The	   thermal	   contact	   resistance,	   Rc	   as	   a	   function	   of	   the	   interface	   thermal	  
conductivity,	   kI	   approximating	   the	   contact	   area	   as	   a	   fin	   with	   adiabatic	   ends	   and	   a	  
contact	  length	  of	  1µm.	  	  The	  maximum	  Rc	  ~0.75	  K/µW	  is	  when	  kI	  =	  0.01	  W/m-‐K.	  For	  
this	  graph,	  LI	  =	  10	  nm,	  w	  =	  500	  nm	  and	  h	  =	  500	  nm.	   (b)	  Predicted	   thermal	   contact	  
resistance,	  Rc	  as	  a	  function	  of	  expected	  values	  of	  the	  interface	  length,	  LI	  ranging	  from	  
1	  to	  100	  nm	  where	  kI	  =	  0.1	  W/m-‐K,	  w	  =	  500	  nm	  and	  h	  =	  500nm.	  (c)	  Predicted	  thermal	  
contact	  resistance,	  Rc	  as	  a	  function	  of	  beam	  widths	  and	  heights	  ranging	  from	  500	  nm	  
to	  1.5	  µm	  when	  kI	  =	  0.1	  W/m-‐K	  and	  LI	  =	  10	  nm.	  ..........................................................................	  43	  

Figure	   2.8	   Thermal	   resistance	   of	   VLS	   Si	   nanowires	   with	   various	   lengths	   and	   diameters.	   The	  
intercept	  on	  Y	  axis	  indicates	  the	  average	  contact	  resistance	  ~	  4.5	  K/µW,	  which	  is	  less	  
than	   10%	   of	   VLS	   nanowires	  with	   71.3	   nm	   diameter	   and	   5	  µm	   length.	   Reproduced	  
from	  J.	  Lim	  et.	  al.	  [64]	  ...............................................................................................................................	  45	  

Figure	  2.9	  SEM	  image	  of	  the	  suspended	  microdevice	  with	  integrated	  SiNWs.	  ........................................	  47	  
Figure	   2.10	   Fabrication	   sequence	   for	   the	   microdevices	   with	   integrated	   SiNWs:	   (a)	   thermal	  

oxidization	  and	  HF	  wet	  etching	  to	  thin	  the	  SOI	  device	  layer,	  (b)	  SiNWs	  patterning	  by	  
EBL	   and	  Cr	  deposition,	   (c)	   Si	   pads	  patterning	  by	  photolithography,	   (d)	  RIE	  of	   Si	   to	  
define	   SiNWs	   and	   Si	   pads.	   (e)	   Patterning	   of	   protective	   LTO	   windows	   and	   LSN	  
Deposition,	   (f)	  Patterning	  of	  heater	  coils	  and	  beams	  by	  photolithography	  and	  Cr/Pt	  
deposition.	   (g)	   RIE	   for	   LSN.	   (h)	   Backside	   alignment	   and	   deep	   silicon	   etching,	   (k)	  
Release	  of	  final	  suspended	  structure	  by	  HF	  vapor	  etching.	  ....................................................	  49	  

Figure	  2.11	  SEM	   images	  of	   (a)	  60-‐nm-‐wide,	  40-‐nm-‐thick	  and	  13-‐µm-‐long	  SiNW,	   (b)	  3-‐µm-‐wide,	  
30-‐nm-‐thick	  and	  22-‐µm-‐long	  Si	  ribbon,	  (c)	  five	  40-‐nm-‐wide,	  30-‐nm-‐thick	  and	  5-‐µm-‐



 
 

vi 

long	  SiNWs	  (Note	  that	  there	  is	  some	  residual	  oxide	  on	  the	  3	  wires	  in	  the	  center),	  (d)	  
three	  100-‐nm-‐wide,	  40-‐nm-‐thick	  and	  107-‐µm-‐long	  SiNWs.	  ..................................................	  50	  

Figure	  2.12	  TEM	  image	  of	  an	  EBL	  Si	  nanowire	  (a)	  Multiple	  Bright	  Field	  TEM	  pictures	  taken	  along	  
the	   length	   of	   the	   wire	   have	   been	   put	   together	   as	   a	   series	   to	   view	   the	   surface	  
morphology	   of	   the	  whole	  wire.	   	   A	   typical	   low	   resolution	  TEM	  picture	  more	   clearly	  
shows	   the	   surface	  profile.	   	   The	  defect	   areas	  were	   formed	  as	   a	   result	   of	  performing	  
Convergent	  Beam	  Electron	  Diffraction	   (CBED)	   at	   300kV.	   (b)	  Multiple	   Selected	  Area	  
Electron	  Diffraction	  (SAED)	  images	  taken	  along	  different	  points	  on	  the	  wire	  show	  the	  
same	   single-‐crystalline	   orientation.	   	   The	   representative	   SAED	   image	   shown	  here	   is	  
the	  zone	  axis	  orientation,	  the	  axial	  crystalline	  direction	  was	  not	  determined.	  .............	  50	  

Figure	  2.13	  Plot	  of	  the	  thermal	  Resistance	  (K/nW)	  as	  a	  function	  of	  nanowire	  length	  (3µm	  up	  to	  50	  
µm)	  for	  Batch	  1	  (circles)	  and	  Batch	  2	  (triangles).	   	  The	  linear	  fit	  passes	  very	  close	  to	  
the	   origin	   indicating	   nearly	   zero	   contact	   resistance.	   Error	   bars	   are	   included	   for	   all	  
points.	  .............................................................................................................................................................	  52	  

Figure	  2.14	  Measured	  ΔTs	  and	  ΔTh	  as	  a	   function	  of	  heating	  power.	  NETs	  ∼1 mK,	   leading	  to	  NEGs	  

∼10 pW/K.	  Adapted	  from	  Wingert	  et.	  al.	  [66]	  ..............................................................................	  54	  
Figure	   2.15	   Bi-‐material	   Cantilever	   based	   calorimeter	   with	   ~4pW	   resolution	   with	   NETs	   ~4µK.	  

Adapted	  from	  Sadat	  et.	  al.	  [67]	  ............................................................................................................	  54	  
Figure	  2A.1	  Measured	  Rs	  and	  Rh	  around	  TG=300K	  used	  for	  calibration	  of	  TCR.	  .......................................	  58	  
Figure	  2A.2	  Heat	  flow	  through	  the	  tapered	  VO2	  beam	  I,	  Q	  in	  nW/K	  as	  a	  function	  of	  the	  temperature	  

difference	  across	  the	  beam,	  ΔT	  in	  K	  at	  TG	  =	  300K.	  ......................................................................	  60	  
Figure	  2A.3	  Illustration	  of	  the	  difference	  in	  definition	  of	  the	  conductance	  either	  by	  considering	  (a)	  

a	  single	  data-‐point	  with	  a	   large	  enough	  ΔT,	  or	   (b)	   taking	   the	   local	  slope	  of	   the	  heat	  
flux	  for	  a	  variety	  of	  temperature	  gradients	  across	  the	  suspended	  beam.	  ........................	  60	  

Figure	  2B.1	  Dissociation	  of	  Pt/C	  precursor	  on	  the	  surface	  by	  the	  incident	  primary	  beam	  as	  well	  as	  
emitted	  secondary	  and	  backscattered	  electrons	  (Adapted	  from	  Utke	  et.	  al.	  [58])	  .......	  62	  

Figure	   2B.2	   (a)	   TEM	   image	   of	   the	   rough	   SiNW	   before	   placing	   on	   microfabricated	   device	   (b)	  
Platinum	   deposit	   imaged	   with	   low	   energy	   Scanning	   Transmission	   Electron	  
Microscopy	   (STEM	   @30kV)	   showing	   surface	   diffusion	   of	   Platinum	   along	   the	  
nanowire	  length.	  ........................................................................................................................................	  63	  

Figure	  3.1	  (a)	  SEM	  image	  of	  Si	  nanowires	  with	  Ag	  nanoparticles	  on	  the	  surface	  (b)	  TEM	  image	  of	  Si	  
nanowires	   after	   Ag	   removal	   in	   the	   etching	   method	   #1.	   (c,d)	   HRTEM	   image	   of	   Si	  
nanowires	   from	   etching	   method	   #1	   and	   #2,	   respectively.	   The	   inset	   of	   (c)	   is	   the	  
selective	  area	  electron	  diffraction	  pattern	  (SAED).	  Scale	  bars	   for	  Figure	  S1	  a,	  b,	  c,	  d,	  	  
are	  1µm,	  20nm,	  1nm,	  2nm,	  respectively.	  Adapted	  from	  Lim	  et.	  al.	  [64]	  ...........................	  68	  

Figure	  3.2	   Surface	   roughness	   characterization.	   (a)	   Serial	  TEM	   images	  of	   Si	   nanowires	   along	   the	  
length	   with	   zoom-‐in	   images	   at	   different	   position.	   (b)	   SEM	   image	   of	   the	   identical	  
nanowires	   from	   (a)	   on	   thermal	   measurement	   device.	   The	   inset	   is	   anchored	   Pt/C	  
composite.	   (c)	   Surface	   profiles	   from	   serial	   TEM	   images.	   The	   length	   is	   1um.	   	   (d)	  
Averaged	  power	  spectrum	  from	  sectioned	  surface	  profiles.	  Red	  line	  and	  dotted	  line	  is	  
exponential	  curve	  fit	  and	  Gaussian	  curve	  fit,	  respectively.	  Scale	  bars	  for	  panel	  (a)	  are	  
200	  nm	  and	  20	  nm,	  panel	  (b)	  is	  2	  µm.	  ..............................................................................................	  71	  



 
 

vii 

Figure	  3.3	  Morphology	  of	  EE	  SiNWs	  (a)	  Porous	  nanowire	   imaged	  with	  STEM	  from	  a	  wafer	  with	  
starting	  resistivity	  ρ	  <	  0.03	  Ω-‐cm	  (b)	  Three	  dimensional	   tomogram	  showing	  a	  non-‐
circular	   cross-‐section	   and	   roughness	   along	   the	   edges	   of	   the	   nanowire	   (c)	   STEM	  
profile	  for	  a	  circular	  cross-‐section	  smooth	  VLS	  nanowire	  (d)	  STEM	  profile	  for	  a	  non-‐
circular	  cross-‐section	  EE	  nanowire.	  ..................................................................................................	  73	  

Figure	  3.4	  Extraction	  of	  rms,	  σ	  and	  L	  from	  TEM	  images	  and	  their	  effect	  on	  thermal	  conductivity.	  
(a-‐b)	   rms,	  σ	   effect	   on	   thermal	   conductivity,	   (c-‐d)	   Correlation	   length	   (L)	   effect	   on	  
thermal	  conductivity.	  All	  scale	  bars	  are	  1µm.	  ...............................................................................	  76	  

Figure	   3.5	   Thermal	   conductivity	   with	   temperature	   as	   a	   function	   of	   L	   and	   rms,	  σ.	   (a)	   Thermal	  
conductivity	   dependence	   on	   correlation	   length	   L	   with	   controlled	   rms,	   σ	   and	  
diameter.	  (b)	  Thermal	  conductivity	  dependence	  on	  σ	  with	  controlled	  L	  and	  diameter.
	  ...........................................................................................................................................................................	  77	  

Figure	  3.6	  (a)	  Thermal	  conductivity	  accumulation	  as	  a	  function	  of	  wavelength	  at	  300K	  and	  1000K	  
[71].	   Roughly	   80%	   of	   contribution	   to	   thermal	   conductivity	   at	   room	   temperature	  
comes	  from	  phonons	  with	  wavelength	  between	  1	  and	  100nm.	  (b)	  Roughness	  Power	  
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CHAPTER 1 
 

HEAT TRANSFER IN SOLID 
STATE SYSTEMS 

 

1.1 INTRODUCTION 
 

Propagating electricity, light, sound or heat through solids has been of immense interest 
to human beings right from the advent of Science and Technology. Understanding 
electronic transport through solids was a natural result of attempts to discern the internal 
electronic structure of atoms. The picture of how electrons are occupied around the solid 
nuclei consisting of neutrons and protons was developed in the early 20th century (1911-
13) by Ernest Rutherfold and Niels Bohr, even before the era of quantum mechanics. The 
motion of the valence electrons as a free electron gas was sufficient to understand simple 
transport phenomena, for example, Ohm’s law and the relation between the electrical and 
thermal conductivity of metals. A solid that is thus opaque to the naked eye is transparent 
to these conduction electrons due to Pauli’s Exclusion Principle, allowing electrons the 
freedom to move freely without being scattered by other electrons or by the ionic core. 
Further, in the case of a periodic lattice in a crystal, the picture of Energy Bands was 
subsequently developed allowing for a distinction between metals, semiconductors and 
insulators as well as a clearer understanding of magneto-transport. The insight gained 
from this band picture was that electrons were not traversing as individual particles 
through ions inside the solid core, instead they moved as wave-packets in such a way that 
they didn’t see the ionic core. However, in order to understand the motion of these 
electrons under the influence of an external applied electric field, a simple kinetic model 
suffices, which is discussed briefly in this treatise.  

Transport of light through vacuum, on the other hand, is well understood and has been a 
cornerstone of physics since James Clark Maxwell’s equations in 1861, with the speed of 
light in vacuum, c being a fundamental constant. Absorption, transmission and other 
forms of manipulation of light in solids have also been studied extensively in the past 
century and are directly related to the band structure of solids. If light does not interact 
with solids, then there is no energy transfer from the EM wave to the solid. The starting 
point to understand propagation of light through solids is observing that they behave as 
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waves described by Maxwell’s Equations. It can be shown that the EM wave travels at a 
speed c/n, where n is the real part of the refractive index of the solid. The refractive index 
is intimately related to the dielectric function of the solid, which defines the response of a 
crystal to the EM field. Since the dielectric function depends on the electronic band 
structure of the solid, a direct link between optical and electronic energy transfer is 
established.  

While there is a plethora of work that focuses on electronic and EM wave based energy 
transfer in solids, the focus of this thesis is on energy transfer in the form of heat in 
crystalline solids. Similar to the behavior of electrons and light in matter, the transport of 
heat is not easy to interpret if we only consider the vibration of atoms about their 
equilibrium positions, where they transfer energy only if their motion results in an excess 
of energy. It is difficult to fathom how such a simple mechanism can result in a very high 
thermal conductivity in an electrically insulating crystal such as Diamond (2000 W/m-K) 
or Silicon (140 W/m-K) at room temperature, whereas the amorphous phase of the same 
material has a thermal conductivity orders of magnitude smaller (~1 W/m-K). In metals, 
the electrons transfer heat, resulting relatively high values of conductivity, such as 
Copper (300 W/m-K). In order to understanding this fascinating phenomena of how 
relatively massive atoms can transfer energy efficiently in the form of heat in crystalline 
solids, one must develop a framework where the individual particle model is replaced by 
that of a collective motion (similar to the band picture of electrons). The first part of this 
thesis will focus on reviewing existing understanding of thermal energy of solids as 
normal modes of vibration. This normal basis allows heat waves to be described as 
quanta of thermal energy called ‘phonons’. The phonons can thus be described to be 
carrying heat with group velocities close to the speed of sound in the solid (the limits of 
these will be discussed in detail in later sections). As will be seen in this section, the 
atoms need to be treated as resting in a harmonic potential with quadratic displacement 
about their equilibrium state. Hence, with this normal mode basis, we can then treat the 
phonons as orthogonal to each other, but undergoing scattering due to any 
anharmonicities. Another convenience is treating phonons as a kinetic gas where they can 
further scatter from any imperfections in the crystal, including boundaries. In addition, 
this description allows the identification of relevant length scales of the system, in 
particular, the wavelength, mean free path and the coherence length of the phonons: all of 
which will be described in detail in this section. In order to understand the basics of 
phonon transfer in dielectric solids and how this can be manipulated, let us describe the 
mathematical basis for phonons first. 
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1.2 PHONONS 
 

1.2.1 Classical Lattice Vibrations 

A classical picture of masses connected by springs is sufficient to identify the 
relationship between energy and how this energy is distributed amongst lattice waves that 
have wavelengths as integer multiples of the lattice spacing in a periodic lattice. In other 
words, one can derive a dispersion relation that describes the energy occupation with 
different wavevectors in a discrete lattice, similar to the dispersion relation of electrons or 
photons. 

 

Figure	  1.1	  One	  Dimensional	  Spring	  Mass	  System	  
 

Consider the picture in Figure 1.1 where the atoms are separated by a lattice constant a, 
each with a mass, m and connected by a spring with spring constant g. If the sth atom is 
displaced by a distance us, the force equation for that atom can be written as: 

 
m d 2us
dt2

= g us+1 +us−1 − 2us( )  
 

(1.1) 
 

if only nearest neighbor interactions are considered. This is similar to a wave equation 
with a solution of the form 

 us = u0 exp −iωt( )exp inka( )  (1.2) 
 

Here, ω is the angular frequency and k = 2π/λ is the wavevector, where λ is the 
wavelength. Using this ansatz, the dispersion relation can be derived as follows: 

 
ω =

2g
m
1− coska( )

1
2  

 
(1.3) 
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There is an obvious limit to the smallest wavelength possible, which has to be λ = 2a.  

Hence, the range of possible wavenumbers spans -π/a < k < π/a. Equation (1.3) can be 
plotted as the dispersion relation as shown in Figure 1.2 below: 

 

Figure	  1.2	  One	  Dimensional	  Dispersion	  Relation	  for	  phonons	  
 

In the classical limit, as ka → 0, the dispersion relation can be approximated as: 

 
ω =

g
m
ak  

 
(1.4) 

 

The speed of phonon wave propagation is defined as its group velocity given by vg = 
dω/dk. In this linear regime, especially in the long wavelength (classical) limit it is a 
constant and is equal to the speed of sound in the crystal. Hence, heat travels close to the 
speed of sound in a crystalline solid and the branch shown in Figure 1.2 is called the 
acoustic branch of the dispersion relation. In the other extreme, when the wavelength of 
is very short (k → π/a), the atoms vibrate out of phase with each other and the group 
velocity reduces to zero. Hence, no energy transfer occurs in this limit. Of course, real 
crystals are three dimensional in nature. In order to address the transport of energy via 
atomic vibration in real solids, we must first define a mathematical construction that 
enables physical understanding and captures important symmetry effects.  
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1.2.2 Lattice Structure and the Brillouin Zone 

A perfect three- dimensional crystal would have translational symmetry as defined by the 
lattice and the basis vectors. A lattice is a periodic array of points in space, which define 
any atom in the crystal, R = n1a1 + n2a2 + n3a3, where n1, n2 and n3 are arbitrary integers 
and a1, a2 and a3 are translational vectors. A basis is the building block of the lattice 
consisting of an atom or a group of atoms inside a primitive unit cell that are then 
translated using the primitive translation vectors to reconstruct the lattice. Note, that for a 
multi-atom basis, R doesn’t describe every atom in the crystal, instead describing every 
repeating basis.  To understand this more clearly, let us consider the case of Silicon. As a 
diamond cubic crystal structure, the basis is comprised of two Silicon atoms, where two 
face-centered cubic primitive unit cells are displaced from each other by one-quarter of a 
body diagonal as illustrated in Figure 1.3. 

 

 

Figure	  1.3	  Crystal	  Structure	  of	  Cubic	  Silicon	  
 

Such a translational invariance that defines the symmetry of the crystal is very powerful 
as it indicates that an intrinsic property of the crystal doesn’t change under any translation 
by the lattice vectors. The strength of this construction can be seen more clearly once a 
Fourier Transform of the primitive lattice vectors is taken to define the crystal in 
reciprocal space. That is, 

 b1 = 2π
a2 × a3

a1 ⋅a2 × a3
; b2 = 2π

a3 × a1
a1 ⋅a2 × a3

; b3 = 2π
a1 × a2

a1 ⋅a2 × a3
 

 
(1.5) 

 

where b1, b2, b3 are primitive reciprocal lattice vectors that help define any reciprocal 
lattice vector, G given by: 

 G =υ1b1 +υ2b2 +υ3b3  (1.6) 
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A Brillouin Zone is defined as a primitive cell in the reciprocal space that helps define the 
reciprocal lattice. Once this Fourier Transform based construction is complete, we can 
realize that the set of reciprocal lattice vectors determines in entirety the requirement for 
diffraction due to elastic scattering of any form of waves from the lattice structure. In 
other words, the first Brillouin Zone can uniquely identify all symmetries of the 
constituent crystal and is used extensively in diffraction-based studies of crystal lattices. 
Figure 1.4 shows the first Brillouin Zone of a face-centered cubic crystal.  

 

 

Figure	  1.4	  First	  Brillouin	  Zone	  of	  a	  3D	  fcc	  crystal	  
 

The Γ-point is the center of the Brillouin Zone. In the directions (100), (010) and (001), 
the X-point defines where the x,y and z axes meet the edge of the zone. Further, the most 
closely packed direction along the body diagonal of the crysal in the (111) direction 
meets the zone edge at the L-point. These are noted to be high symmetry directions in the 
crystal structure and the significance of these different directions will be revisited later in 
this thesis. The reciprocal lattice vector, G joins the Γ-points of two adjacent Brillouin 
Zones and thus is sufficient to uniquely define the crystal. Interestingly, this is related to 
the range of independent values of the allowed wavevectors, k in a discrete lattice as 
described in Section 1.2.1. 

 In a one-dimensional linear lattice described above, -π/a < k < π/a gives the range 
of the first Brillouin Zone. The difference from continuum is thus clear in this new 
construction in reciprocal space. While in the classical limit of lattice vibrations, as a → 
0, kmax → ∞. However, in the discrete lattice case, values of k outside the first Brillouin 
Zone only serve to replicate solutions for the elastic waves as any value of k outside these 
limits can be brought back to the first Brillouin Zone by subtracting G where n is any 
integer. It is instructive to repeat the lattice vibration analysis for a two-atom basis. 
Following Kittel et. al.[1] consider the case of two atoms of different mass, m1 and m2 
vibrating in parallel planes interacting with each other with a force constant, g as 
illustrated in Figure 1.5. 
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Figure	  1.5	  Two	  atom	  basis	  vibration	  system	  
 

The force equations for the plane of atoms is given by [1]: 

 
m1
d 2us
dt2

= g vs + vs−1 − 2us( );

m2
d 2vs
dt2

= g us+1 +us − 2vs( );
 

 
 

(1.7) 

 

Assuming plane wave solutions again, one can obtain a dispersion relation for the two-
dimensional case as well. There will be two solutions for ω = f(k), resulting in two 
branches – acoustic and optical. These are easy to understand in the long-wavelength 
limit, where ka → 0. The dispersion relation can then be shown to reduce to: 

 
ω =

2g m1 +m2( )
m1m2

optical branch

ω =
2g

m1 +m2( )
ka acousticbranch

 

 
 
 

(1.8) 

 

This splitting of the dispersion relation into two branches can also occur if the spring 
constants are different and the masses of the two-atom basis are the same, as could 
typically occur in a real crystal. This analysis can be extended to a three-dimensional 
structure as well. The key physics here is that when there are p atoms in the primitive cell 
(multiple atom basis), there are 3p branches to the dispersion relation, of which 3 are 
acoustic and the rest 3p-3 are optical branches. For example, consider the case of silicon, 
which has two atoms in the primitive cell. Hence, there are 6 branches, with 3 acoustic 
and 3 optical branches. The optical branches typically have very low group velocity, as 
can be seen from Equation (1.8) and hence carry very little energy. The atoms here are 
vibrating out of phase with each other. In a polar crystal these can be very useful for 
coupling with EM waves, which have an oscillating E-field as well. Furthermore, in each 
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branch of the dispersion relation, there are two polarizations, longitudinal and transverse. 
In summary, for two-atom silicon, there are six branches: one LA (longitudinal acoustic), 
two TA (transverse acoustic), one LO (longitudinal optical) and two TO (transverse 
optical). Figure 1.6 shows the dispersion relation of Silicon that accounts for all the 
modes in different symmetry directions. 

 

Figure	  1.6	  Dispersion	  relation	  of	  silicon	  (adapted	  from	  the	  Dolling	  [2]).	  The	  zone	  center	  is	  
the	  Γ-‐point,	  while	  the	  L-‐	  and	  X-‐points	  are	  shown	  as	  described	  in	  the	  text.	  

 

Heat, as described before, is mainly carried by the acoustic modes having a finite group 
velocity. Consider energy propagation in the long-wavelength limit in the (100) direction 
(Γ-X direction in the Brillouin Zone (BZ)). The LA modes have a group velocity vg = 
dω/dk ~8440 m/s, while the TA modes carry energy slower at around 5860 m/s (both in 
the long wavelength limit, close to the BZ center). It is a matter of debate whether the LA 
or the TA modes carry a larger fraction of the heat [3]. Further, it can be seen from Figure 
1.6 that the group velocity is direction dependent. Also, the two TA modes lie on top of 
each other in the X- (along the axes) and L- (body diagonal) directions. However, in the 
K- (intersection of two hexagonal faces of the BZ, see Figure 1.4) direction, the TA 
modes actually have two different group velocities. The significance of direction-
dependent group velocities will become clearer in Chapter 4 when we look at the thermal 
properties of single-crystalline Bismuth nanowires grown in different crystallographic 
directions. Also, the role of the group velocity and whether it can be manipulated remains 
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an interesting problem in solid-state systems and will be addressed later on in Chapter 1 
and also in Chapter 3. 

 

1.2.3 Phonons 

The connection between energy and travelling waves can be clearly understood by the 
dispersion relation described in the previous sections. However, there is a correlation 
between how a single atom oscillates about its equilibrium position and how energy is 
transferred by lattice vibrational waves. Further, discreteness of the lattice plays a role, 
which has not been considered in the continuum picture. Both of these effects are non-
trivial, leading to important insight on how heat moves in a solid. 

 Firstly, when the equation of motion (1.1) was considered for an atom in a linear 
chain, the dispersion relation details out the possible energy states that can be occupied. 
In reality, each atom can be treated as a harmonic oscillator and a general quantum 
mechanical framework can be derived to describe the quantization of energy states. The 
Hamiltonian, Η for the system of N atoms in a one-dimensional chain with a harmonic 
potential is given by: 

 
Η =

pi
2

2m
+
1
2
mω 2 xi − x( )2

#

$
%

&

'
(

i=1

N

∑  
 

(1.9) 

 

where pi and xi are the momentum and position operators for the ith atom with mass m. 
Hence, we are solving the time-independent Schrödinger’s Equation: 

 Ηψ = Eψ  (1.10) 
   
Using an energy raising/lowering operator defined as [4]  

 a± ≡
1
2mω

ipi +mωxi( )  
 

(1.11) 
 

It can be shown that the eigenstates of energy are given by: 

 
En = n+ 1

2
!

"
#

$

%
&ω  

 
(1.12) 

 

where n is an integer and ω / 2  is the zero-point energy. The energy levels allowed for 
the quantum mechanical oscillator, En, are thus discrete. These discrete or quantized 
vibrational states of energy are called phonons. The energy quantum is hence ω . Thus, 
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now the allowed vibrational energies of crystal waves are observed to be quantized. The 
physical picture that develops is that propagation of energy is like a packet of energy 
consisting of n phonons at any energy level. In order to link this observation with the 
energy dispersion relation developed in the earlier question, we must answer the central 
question: how many phonon states are available per unit frequency range? This is defined 
as the Density of States, D(ω) and is directly related to the discreteness of the lattice, as is 
discussed below. 

 In order to determine the density of states that determine the energy level 
occupation, again the reciprocal lattice concept becomes important. Consider periodic 
boundary conditions over N primitive cells within a cube with side L. Periodic Boundary 
Conditions hence require that: 

 exp i kxx + kyy+ kzz( )!" #$≡ exp i kx x + L( )+ ky y+ L( )+ kz z+ L( )( )!" #$ (1.13) 

 

where k is the wavevector or the inverse wavelength in reciprocal space. Then, there is 
one allowed value of k per unit volume 2π L( )3  in k-space. The number of orthogonal 
plane wave solutions to the Hamiltonian is equal to the number of atoms in the system. 
Hence, there are N normal modes in the system. Thus, we see that the number of states, 
N, in three dimensional reciprocal space is:  

 
N =

4
3πk

3

2π
L( )

3 =V.
k3

6π 2  
 

(1.14) 

 

where V=L3 is the volume of the crystal. Then, the density of states, D(ω) is defined as: 

 
D(ω) ≡ dN

dω
=
dN
dk

dω
dk

=
Vk2

2π 2vg
 

 
(1.15) 

 

Here, vg=dω/dk is the group velocity approximated for an isotropic dispersion relation as 
is shown in Figures 1.2 and 1.6. When vs~vg=ω/k , this approximation is called the Debye 
Approximation [5]. Let us consider the thermal vibrational energy at any temperature. It 
can be loosely estimated that ω ≈ kBT (explained below), where   is the reduced 
Planck’s constant, kB is the Boltzmann Constant and T is the absolute temperature. At 
room temperature (~300K), we can then estimate that ω ~ 6.25 THz. Looking at Figure 
1.6, at room temperature for silicon, all of the TA modes and most of the LA modes are 
energized and carrying energy. One can then see the limitation of the linear Debye 
Approximation, as the zone-edge TA modes do not travel with a large sound velocity. In 
fact, as discussed earlier, the zone-edge phonon modes mostly behave as standing waves 
and carry no heat at all, though there are exceptions. Therefore, while the Debye 
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Approximation, ω=vsk, captures the dispersion relation accurately for lower 
temperatures, inaccuracies becoming significant for the higher energy modes occupied at 
higher temperatures. Nevertheless, this approximation allows us to simplify the 
mathematics sufficiently to gauge the physics of heat transfer. 

 

1.2.4 Phonon Statistics and Heat Capacity 

The equilibrium distribution of phonons follows the Bose-Einstein distribution and is 
given as [6] 

 n =
1

exp ω
kBT
!

"
#

$

%
&−1

  
(1.16) 

 

Then, using Equation (1.12), the total energy in the crystal is [7]:  

 
E = n

k,p
+
1
2

!

"
#

$

%
&ωk,p

k,p
∑  

 
(1.17) 

 

where p is the polarization of the phonon mode and k is the wavevector. The summation 
is over the entire Brillouin Zone for both transverse and acoustic modes. At higher 
temperature, n ≈ kBT ω  which gives E ≈ kBT . This is a general estimate for the 
thermal vibrational energy and has been used above in estimation of phonon energy 
modes to gauge the validity of Debye’s linear approximation as well. Since for a bulk 
solid the discretization is very dense, the summation over the Brillouin Zone can be 
replaced by an integral in k-space, which can then be transformed to an integral in energy 
by using the Density of states D(ω) to convert variables from k to ω as below: 

 
E = dk

2π( )3
∫ n

k,p
+
1
2

"

#
$

%

&
'ωk,p

p
∑ ;

E = dωDp ω( )∫ n
p
+
1
2

"

#
$

%

&
'ω p

p
∑

 

 
 
 

(1.18) 

 

The heat capacity of the crystal can then be defined as: 

 
Cv ≡

∂E
∂T

= dωDp ω( )∫
∂ n

p

∂T
ω p

p
∑  

 
(1.19) 
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In order to capture all the phonon modes present in the Brillouin Zone, we can define a 
cutoff wavevector, kD = (6π2N/V)1/3 from Equation (1.14). η = N/V is an intrinsic 
property of the crystal, giving the number density of atoms. Then, a Debye Temperature, 
θD can be defined as the upper limit to the integral in Equation (1.19): 

 ωD = kBθD; whereωD = vgkD

Hence,θD =
hvg 6π

2η( )
1 3

kB

 

 
 

(1.20) 

 

This can be used to simplify Equation (1.18) to [7]:  

 
Cv = 9ηkB

T
θD

!

"
#

$

%
&

x4dx

ex −1( )
2

0

3θD T

∫  
 

(1.21) 

 

Equation (1.21) is very insightful in the low and high-temperature limits. WhenT <<θD , 
Cv ≈ 234ηkB T θD( )3  for a 3-dimensional solid. This has been observed experimentally for 
many solids, see the illustration in Figure 1.7 for silicon below [8]. The other extreme is 
when T >>θD . Then, Equation (1.21) tends to a constant independent of temperature 
given by Cv ≈ 3ηkB = 3R , where R is the universal gas constant. This is called the 
Dulong-Petit Limit, which can also be derived by taking into account all six degrees of 
freedom of every vibrating atom in the lattice structure. Then, from Equipartition of 
Energy, the energy per atom is given by 6*(1/2kBT)=3kBT. Hence, for a number density 
of atoms given by η, Cv = ∂E ∂T = 3ηkB . Most solids asymptote to this value 
irrespective of whether they are metals, insulators or semiconductors. As can be seen in 
Figure 1.7 for silicon, the high temperature value is ~25 J.mol-1.K-1, which is very similar 
to Copper or Lead. This observation was perplexing to scientists in the early 20th century 
– how can a metal with a very large electron density have the same specific heat at high 
temperature as an insulator with no itinerant electrons? The answer lies in the fact that 
most of the internal energy is carried by the phonons, which follow the Bose-Einstein 
Distribution. Hence, at any temperature T, the energy is carried by all phonons occupying 
the dispersion relation. In a metal, things are different, since the electrons follow the 
Fermi-Dirac Statistics, which forces only electrons within an energy bandwidth of ~kBT 
of the Fermi Level to contribute to the specific heat. This number density is much smaller 
and hence the heat capacity due to electrons is much smaller. 
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Figure	  1.7	  Specific	  heat	  at	  constant	  volume	  of	  crystalline	  Silicon.	  At	  low	  temperatures,	  Cv	  ∝	  
T3	  while	  at	  higher	  temperatures,	  Cv	  approaches	  the	  Dulong-‐Petit	  Limit.	  

 

1.2.5 Kinetic Theory of Gases and Thermal Conductivity 

Now that we have defined phonons as particles, it is possible to make an approximation 
that gives us some physical insight on how phonons transfer heat in the presence of a 
temperature gradient. This process has historically been understood as diffusive and is 
illustrated by Fourier’s Law: 

 q = −κ∇T  (1.22) 
 

where q is the local heat flux (W.m-2), ∇T is the temperature gradient (K.m-1) and κ is 
then defined as the thermal conductivity (Wm-1K-1). This ubiquitous relationship can be 
derived under some approximations using Boltzmann Transport or Kinetic Theory. One 
approach to understanding the origin of κ is using the kinetic theory of gases. This 
assumes that thermal transport in a solid under a temperature gradient occurs with ‘heat-
carrying particles’ scattering off each other and the boundaries of the system, in the 
process transferring energy in a diffusive fashion. Now we know that one can identify 
these particles in a solid as phonons. However, to further breakdown the thermal 
conductivity and gain more insight on what determines this intrinsic property of any 
material, we will have to dig deeper into how these phonon particles interact with each 
other, imperfections in the crystal as well as boundaries of the system. We’ll also keep in 
mind the limitations of approximating the phonons purely as particles, since in reality, 
these are wave-like lattice vibrations that are normal modes.  

The kinetic theory of gases describes a large number of small particles moving about 
randomly colliding with each other and boundaries of the system. A few basic 
assumptions are central to building this theory. All collisions are considered to be elastic, 
conserving energy. The large number of particles allows applying statistical averaging to 
obtain macroscopic properties of the gas. The only interaction between particles is 
collisions. An important time (and subsequently length) scale results from assuming that 
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the time during collisions is much smaller than the time between collisions. Hence, one 
can define a mean free time (length) as τ  ( ) . For t < τ  , particles travel ballistically. 
However, to define a relaxation time, one has to consider many collisions to reach local 
thermal equilibrium. Also, energy and momentum relaxation times can be different. 
While an elastic collision might conserve energy, the momentum can change, thus 
typically momentum relaxation times are shorter than energy relaxation times. All 
particles are treated classically with equations defining their motion being time-
reversible. This picture provides an intuitive understanding of how energy is transferred 
with a large number of phonons being occupied at any particular temperature subject to 
Bose-Einstein statistics.  

Consider a particle moving across a region in the x-direction through a temperature 
difference of  ΔT as shown in Figure 1.8.  

Figure	  1.8	  Motion	  of	  a	  particle	  carrying	  mass	  and	  energy	  across	  an	  average	  distance	    x 	  
under	  temperature	  gradient	  ΔT	  with	  a	  velocity	  in	  the	  x-‐direction	  given	  by	  vx	  

 

Then, 

 
ΔT = dT

dx
 x =

dT
dx

vxτ  
 

(1.23) 
 

Here, τ is the average time between collisions. From the continuity equation, the net flux 
of energy is given by: 

 jU = −nvx cΔT[ ]  (1.24) 
 

where the energy change experienced by the particle is given by cΔT, c being the specific 
heat of the particle moving with an average velocity vx  in the x-direction. Then, 

considering an average of the momentum in the x-direction, vx
2 = 1

3
v 2 . Substituting 

Equation (1.23) in (1.24) we get 

 
jU = −

1
3
nv 2cτ dT

dx
= −
1
3
Cv dT

dx
 

 
(1.25) 
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Here,  ≡ vτ is the mean free path of phonons and C ≡ nc is the specific heat of the 
phonon gas. Comparing Equations (1.22) and (1.25) the kinetic theory defines the 
thermal conductivity as: 

 
κ =

1
3
Cv  

 
(1.26) 

 

This simplified analysis is valid for any type of energy carrier requiring only a single 
assumption of local thermal equilibrium such that the energy density can be defined as a 
function of the local temperature. For any solid, the contribution to thermal conductivity 
can subsequently be seen to consist of both electrons and phonons carrying heat. For 
metals, the specific heat due to electrons (around room temperature) is small and so is the 
mean free path due to strong scattering from phonons. However, large number density 
free electrons contributing to conduction travel at the Fermi Velocity (~106 m/s) and 
hence the major contribution to thermal conductivity in metals comes from electrons that 
have a relatively small effective mass. This is in stark contrast to the overall specific heat 
of the metal, where the main contribution is due to the lattice. In insulators, however, 
there are no free electrons. The lattice vibrations travel at speeds around 103 m/s, but they 
scatter less with mean free paths being longer. Hence, the main contribution to thermal 
conductivity in insulators is phonons.  

 

1.2.6 Boltzmann Transport Theory and the Particle Picture 

Although kinetic theory provides an intuitive understanding of what goes on behind 
energy transfer, it fails under conditions of local temperature non-equilibrium. One 
instance is when the system size becomes comparable to the mean free path,  . A more 
fundamental, but also complicated theory called Boltzmann Transport Equation (BTE) 
addresses this problem. It looks at a statistical ensemble of energy carriers and evolution 
of this ensemble with time away from equilibrium under conditions of diffusion and drift 
(in the presence of an external field). 

In the general form, BTE can be written as [9]:  

 ∂f
∂t
+
v ⋅∇f +


F ⋅ ∂f

∂
p
=
∂f
∂t
$

%
&

'

(
)
scattering

 
 

(1.27) 

 

where f r, p, t( )  is the statistical distribution function of an ensemble of carriers that 

varies with time t, position r  and momentum p . 

F  is the force applied to the carriers. 

The terms on the left are drift terms and the right is the scattering term, which defines the 
rate of deviation of the ensemble away from the equilibrium distribution. In attempting to 
solve the equation in its most rigorous form, seven variables have to be considered, three 
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in position-space, three in momentum-space and time. Various techniques have been 
employed successfully to simplify the problem and transport coefficients can be extracted 
for different forms of fields: thermal and electrical conductivities, diffusion coefficients, 
Seebeck coefficient etc. While the left hand side of the equation is relatively 
straightforward to understand, consisting of forcing terms, the right hand side in its 
complete form is nonlinear having to consider scattering of a carrier from r, p( )  to 
r ', p '( ) . In order to linearize the BTE, the relaxation-time approximation is often 

invoked. Here, one has to assume that the energy carriers are particles.  

 ∂f
∂t
"

#
$

%

&
'
scattering

=
f0 − f
τ
r, p( )

 
 

(1.28) 

 

The linearized BTE implies that once the system of particles is taken out of it’s 
equilibrium statistical ensemble, f0  such that f − f0  is non-zero, then collisions will 
bring it back to equilibrium with an exponential relaxation time, τ  such that 
f − f0 ≈ exp −t τ( ) . Of course, the equilibrium distribution could be of any type, 

Maxwell-Boltzmann for gas molecules, Fermi-Dirac for electrons and Bose-Einstein for 
phonons and photons. 

Let us reconstruct the energy flux from the perspective of particle scattering (similar to 
the kinetic theory developed above) but with the BTE construct now to guide us. The 
energy flux, similar to Equation (1.24) can be written as: 

 q r, t( ) =
v r, t( ) f

r, p, t( )ε
p( )

p
∑  (1.29) 

 
where q r, t( )  is the energy flux, v r, t( )  is the velocity and ε p( )  is the particle energy. 
By converting the summation into an integral and introducing the density of states, D ε( ) : 

 q r, t( ) =
v r, t( ) f

r,ε, t( )∫ εD ε( )dε  (1.30) 

 

When the length of the system is larger than the average mean free path,   then the 
gradient term is approximated ∇f ≈ ∇f0  then the linearized BTE can be solved in 1D as: 

 
f = f0 −τvx

∂f0
∂x

 
(1.31) 

 

This is similar to the kinetic theory in that quasi-equilibrium is assumed (in the linear 
regime, the ensemble doesn’t deviate much from equilibrium). Only the scattering term is 
hence non-equilibrium. Then, Equation (1.30) can be written as: 
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qx x( ) = −∂T

∂x
vx
2 ε( )τ ε( )∂f0

∂T
εD ε( )dε∫  

(1.32) 

 

Thus, the more general form of the thermal conductivity (compare with Equation (1.26)) 
is: 

 
κ =

1
3

v2 ε( )τ ε( )∂f0
∂T

εD ε( )dε∫  
(1.33) 

 

Note here that we have utilized the general relation vx
2 =1 3v2 . 

In summary, the thermal conductivity depends on the energy-dependent group velocity 
v ε( ) , scattering time τ ε( )  and density of states from the ω-k dispersion relation D ε( ) . 
In the kinetic theory, a group velocity that is equal for all phonons is used in the 
estimation of the mean free path. In reality, the large wavevector (short wavelength) 
phonons travel slower than the small wavevector (large wavelength) phonons. An energy 
integral as done in Equation (1.33) prevents this overestimation leading to a more 
accurate determination of the average mean free path. The linearized BTE thus provides a 
more holistic breakdown of thermal conductivity, however it suffers from the limitation 
that phonons behave only as particles in the relaxation time approximation. 

Since many forms of phonon scattering are present in a solid, the net relaxation time is 
determined by considering all the scattering methods in parallel. This formulation is 
called Matthiessen’s Rule such that the effective scattering time, τ eff  is given by: 

 1
τ eff

=
1

τ phonon−phonon

+
1

τ impurities
+

1
τ boundary

 
 

(1.34) 

 

Each of these terms adds an extra length-scale (scattering time) to the limit and we can 
imagine that the strongest scattering will limit the mean free path the most, hence the 
parallel treatment of different scattering forms. Note here that we are not considering all 
possible phonon collisions (eg. electrons, dislocations etc) and only the ones most 
relevant for our study. It is also important to note that scattering is strongly temperature 
and energy-dependent. Let us try to understand where each of these terms comes from 
below. 

Phonon-Phonon Scattering: As described earlier, in the particle picture, when phonons 
scatter with each other, they can alter both the momentum and/or the energy of the 
impinging phonons. For simplicity, only 3-phonon processes are considered here. While 
phonons are massless particles, they carry crystal momentum, which is defined as k for 
a phonon with wavevector k.  
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Figure	  1.9	  Vector	  Representations	  of	  Normal	  (N)	  and	  Umklapp	  (U)	  Phonon-‐Phonon	  
Scattering	  

 

During any collision between two phonons, overall energy and crystal momentum have 
to be conserved. An equilibrium distribution of phonons moving under a temperature 
gradient in a crystal will not be affected by scattering from other phonons of the type 
described in the first part of Figure 1.9 above. Such collisions are called Normal (N) 
processes and do not provide a resistance to heat transfer. However, the second kind, 
where overall crystal momentum is only conserved when the momentum of the resultant 
phonon is reversed (dressed by the reciprocal vector, G to keep the phonon count in the 
Brillouin Zone intact) does cause resistance to heat flow. Such processes are called 
Umklapp (U) processes. Thus, phonons with small wavelengths (large wavevector) tend 
to scatter with other phonons following the U-processes and hence cause a resistance to 
heat flow that is proportional to ω2 [10], [11] derived from Fermi’s Golden Rule given 
by: 

 1
τ ph−ph

≈
1

τU,kλ
= γ kλ

2 2kBT
Mvkλ

2
ωkλ
2

ωD

 
 

(1.35) 

 

where γ kλ  is the mode Grüneisen anharmonicity parameter, vkλ  is the mode group 
velocity and ωD is the Debye Frequency, all defined for the mode kλ. Umklapp resistance 
is related to the anharmonicity of the crystal and is dominant at higher temperature, 
where the phonon wavelengths are longer. The distribution of phonon wavelengths as a 
function of temperature will be discussed more in detail in the next section. In summary, 
umklapp scattering is an inelastic process and is the dominant scattering mode at higher 
temperatures. 

Phonon-Impurity Scattering: Any imperfections in the crystal can scatter phonons, 
although the scattering cross-section depends upon many factors, including the 
wavelength of the impinging phonons and the strength of the impurity scattering field. 
From the phonon perspective, a defect can be understood as a change in mass, the spring 
constant, or the local strain field. Klemens [12] came up with a comprehensive picture of 
how lattice vibrations can scatter from defects by using second order perturbation theory 
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and considering scattering of an incoming phonon with wavevector, k to an outgoing 
phonon with wavevector, k’. The Klemens’ expression for the impurity scattering time in 
a three-dimensional crystal is given by: 

 1
τ impurities

= 3a
3

G
S2 ω

4

πvg
 

 
(1.36) 

 

where a is the lattice constant of the crystal, G is the number of atoms in the crystal and 
vg = dω/dk is the group velocity that can be frequency dependent and derived from the 
dispersion relation. S is the scattering cross-section, which he elucidated as: 

 S2 = S1
2 + S2 + S3( )2

S1 =
ΔM
M

1
2 3

;S2 =
δ v2( )
v2

1
6
;S3 =Qγ

ΔR
R

2
3

 

 
 

(1.37) 

 

Here, S1 arises from the mass difference due to an impurity/vacancy, S2 arises from the 
difference in the local potential energy due to a binding force or spring constant change, 
and S3 arises from local strain fields. For example, if there was a vacant spot instead of an 
atom, we can expect ΔM M = −1, δ v2( ) v2 = −1, and  Q = 3.2 . Note that in this 

treatment, the lattice vibrations are not treated as particles and the wavelength matters. In 
the long wavelength limit (or at lower temperatures), we can use the Debye 
Approximation where ω=vsλ. Substituting this into Equation (1.36), τ I ∝λ

−4 , which is 
commonly known as the Rayleigh Limit [13]. Here, the scattering from impurities is 
again wavelength dependent, and is elastic, since the energy is conserved. In the small 
wavelength limit, the cross section is proportional to the projected area of the defect and 
is different from Equation (1.36); for example, for a spherical defect, this is just πR2. 
Another important observation is that the scattering cross-section is not directly 
temperature dependent. 

Phonon-Boundary Scattering: Casimir [14] treated scattering from the boundary such 
that a perfectly rough surface absorbed all phonons incident upon it, and re-emitted them 
at a rate depending on the absolute temperature of the surface, just like a black body. This 
resulted in a well-studied (both theoretically and experimentally) diffusive picture for 
surface scattering as illustrated in Figure 1.10(b) [13], [15]. The other extreme of a 
perfectly smooth surface specularly reflecting the phonons has never been observed 
experimentally (see Figure 1.10(a)) 
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Figure	  1.10	  (a)	  Specular	  Reflection	  where	  the	  incoming	  wave	  is	  reflected	  off	  the	  surface	  (b)	  
Diffusive	  scattering	  where	  the	  reflected	  wave	  loses	  it’s	  memory	  and	  can	  scatter	  in	  any	  

direction	  
 

Ziman [9] estimated the average mean free path from the boundary to be given by: 

 
ΛB =

1+ p
1− p

Λ0B  
 

(1.38) 

 

where p defines the specularity ranging from perfectly diffusive (p=0) to perfectly 
specular (p=1) and Λ0B is the mean free path for perfectly rough surfaces. Thus, the 
scattering time limited by boundary scattering can then be defined as: 

 1
τ boundary

=
vg
ΛB

 
 

(1.39) 

 

In the case when p=0, this is known as the Casimir Limit [14]. However, how rough the 
surface is compared to the phonon wavelength is what really determines if the scattering 
if diffusive or not. While super-diffusive (tending towards specular) transport has been 
demonstrated experimentally [16–20], it is challenging to observe anything below the 
diffusive Casimir Limit. Nanostructuring provides a unique opportunity to tailor 
boundary scattering in different ways, but this will be discussed in much more detail in 
Chapters 3 and 4 in this thesis. 

As can be seen from studying three different phonon scattering regimes, they are 
significant in different temperature regimes. At very low temperatures, all the phonons 
are not populated and hence scattering times are low, hence dominated by first the 
boundary and then impurities. As temperature goes up and all phonons get occupied 
Umklapp scattering increases, thus increasing thermal resistance due to inter-phonon 
coupling. The effective scattering time coupled with the group velocity of the phonons as 
described in Equation (1.34) determines one important length scale of the problem – the 
frequency dependent mean free path. Extensive experimental [21–23] and theoretical 
[21], [24] studies have been performed in the last few years that show the accumulated 
contribution of frequency dependent mean free paths to the thermal conductivity, which 
are not reviewed here. When phonons are assumed to behave as particles, they scatter off 
lattice defects, the boundary and other phonons to produce a finite thermal resistance that 
is then used to define the thermal conductivity of the crystal.  However, we should 
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remember that phonons are actually lattice vibrations with finite wavevectors spanning 
the Brillouin Zone. This brings us to the second important length-scale in the problem – 
the phonon wavelength. 

 

1.2.7 Bose-Einstein Distribution and the Dominant Phonon Wavelength 

As described in Section 1.2.4, phonon occupation follows Bose-Einstein Statistics, which 
can be rigorously derived using quantum statistical mechanical laws. In the high 
temperature limit, the Bose-Einstein statistical distribution is well approximated by the 
Maxwell-Boltzmann Distribution for particles, in which case, as pointed out in Equation 
(1.17), n ≈ kBT ω . Then, the average energy occupied by phonons at a particular 
temperature is given by E ≈ n ω = kBT . Utilizing the Debye Approximation 
ω = 2πvs λ , the dominant wavelength carrying the energy of phonons can then be 
defined as: 

 
λd ≅

2πvs
kBT

 
 

(1.40) 

 

This is an order of magnitude estimate at best, since there are a number of 
approximations involved in deriving this formulation. For Silicon at 300K using the 
longitudinal speed of sound at room temperature as an approximation for vg=8433 m/s, 
and substituting  =1.034×10−34 Js  for the reduced Planck’s constant and 
kB =1.38×10

−23JK −1 , λd ~ 8Å. Obviously, the dominant wavelength can not be less than 
the lattice spacing of the crystal, but typically the order of magnitude estimate can be 
used to guess that the dominant wavelength, λd ~ 1 nm [25].  In order to define the 
dominant wavelength accurately, one can use the Wien’s Displacement Law for 
inspiration. In the case of blackbody emission from a body, the maximum value of the 
Planck’s Distribution can be determined by considering the spectral distribution of the 
intensity, I λ( )  and then finding the wavelength where dI λ( ) dλ = 0 [25]. In the case of 
phonons a similar analysis can be attempted; however one has to be careful, as the 
weightage has to be determined for how much heat is carried by which phonons, which 
differs from occupation of heat [26].  

Dames and Chen [26] were able to derive the wavelength distribution of phonons 
contributing to thermal conductivity by considering a crystal in the diffusive boundary 
scattering regime (p=0). This was a clever trick employed so that the phonon mean free 
path,   would now be a function of the phonon wavelength. Then, the spectral thermal 
conductivity can be written as a function of wavelength similar to Equation (1.33): 
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κ λ( ) = dλCv λ( ) ⋅ v λ( ) ⋅

0

λ

∫   
 

(1.41) 

 

Here, the analysis is considerably stronger than the order of magnitude estimation above, 
since a more accurate analytical model can be used for the dispersion relation that defines 
the phonon group velocity. The Debye Model overestimates the group velocity for the 
higher energy, small wavelength phonons. Using the Born-von Karman model to define 
the phonon energies, ω =ω0 sin λ0k 4( ) , the spectral group velocity, v λ( ) can be more 
accurately estimated. Here, ω0 ≡ 4vg λ0 with λ0 is obtained by considering all the 

phonons in the Brillouin Zone as λ0 = 2π 6π 2N( )
1
3 for a three dimensional crystal. For 

silicon, they derive λ0 as 0.55nm. Then, the accumulative spectral thermal conductivity 
can be subsequently estimated as: 

 
κ λ( )
κ total

=
Cv λ( ) ⋅ v λ( )dλ

0

λ

∫

Cv λ( ) ⋅ v λ( )dλ
0

λ0

∫
 

 
(1.42) 

 

This analysis is tremendously enlightening for nanostructures and for silicon at high 
enough temperatures, the analysis shows that 90% of the heat is carried by phonons that 
have λ < 2.94λ0 ≈1.61nm( ) [26]. At lower temperatures, the spectrum of wavelengths 
contributing to thermal transport broadens, with 90% of heat being carried by phonons 
with wavelengths less than 11.3nm in Silicon at 10K. Esfarjani et. al took this analysis 
further for bulk Silicon where the mean free paths can be spectrally dependent and used 
first-principles calculations to show that phonons with wavelengths less than 6nm  carry 
all the heat in Silicon at 277K as shown in Figure (1.11) below [11]. 
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Figure	  1.11	  Reproduced	  from	  Esfargani	  et.	  al.,	  the	  accumulation	  of	  thermal	  conductivity	  in	  
Silicon	  at	  277K	  as	  a	  function	  of	  phonon	  wavelength	  is	  shown	  by	  the	  red	  curve	  [11].	  

	  
In the strictest sense, if one is able to design nanostructures that have dimensions of the 
order of the ‘thermal wavelength’, then phonon wave effects can dominate particle based 
transport and many interesting wave phenomena could be observed. One such experiment 
that stood out was the measurement of the quantum of thermal conductance by Schwab 
et. al. using 60nm thick and 200nm wide Silicon Nitride membranes. These dimensions 
were close to the dominant phonon wavelength, λd below 0.8K, where these 
measurements were performed [27]. 

Thus, the phonon wavelength is the second important length-scale that needs to be 
considered while studying heat transport. Apart from the thermal de Broglie Wavelength 
at any temperature (as discussed in the previous paragraph), scattering of phonons with 
different wavelengths can also be non-diffusive. In Ziman’s treatment of boundary 
scattering, he determined an expression for the spectral specularity parameter [9]: 

 
p λ( ) = exp −16π 2η2

λ 2
"

#
$

%

&
'  

 
(1.43) 

 

(note extra factor of π has been removed as pointed out by Zhang [28] and Yang et. al. 
[29]) where η is the root mean square amplitude of the roughness of the boundary. Thus, 
the same surface can appear rough for smaller wavelength phonons, but smooth for long 
wavelength phonons. However, this definition of the specularity parameter needs to be 
addressed carefully as it assumes that the surface roughness, given by f(x) is 
approximated by an auto-correlation function that is Gaussian. In detail, the auto-
correlation for the roughness can be defined as:  
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277 K. The results depend slightly on the number of k-point
mesh used for the integration within the FBZ. Here, we are
showing results obtained with 18 × 18 × 18 mesh, which is
close to convergence. The normal and umklapp components
of the lifetimes are separated as 1/τ = 1/τU + 1/τN . We note
that although the lifetimes associated with normal processes
are in 1/ω2, those of umklapp processes seem to scale at
low frequencies like 1/ω3, so that the former dominates at
low frequencies. This is in contrast to the first-principles
results provided by Ward and Broido,31 who report that the
umklapp rate is in ω4. Although not explicitly mentioned in
their paper,32 fits to their data with ω3 were almost as good as
the fit with ω4. In the Appendix, we provide a proof of why,
in the case of Si, the umklapp rate would behave as ω3.

From Fig. 5, we can notice that at low frequencies (typically
below 3 THz or 100 cm−1 where dispersions are linear), normal
rates dominate, while at higher frequencies and typically for
optical modes, umklapp processes dominate transport.

E. Thermal conductivity from lattice dynamics

To see the contribution of each MFP to the total thermal
conductivity, following the approach of Dames and Chen,33

we have decomposed the thermal conductivity based on each
mode and sorted each component according to their mean-free
paths. One can then define a differential thermal conductivity
and the accumulated one, which is its integral:

dκ($kλ) = 1
3
vkλ $kλ Cvkλ,

(21)

κ($) = 1
Nk

$kλ<$∑

kλ

dκ($kλ).

The above can be plotted versus the MFP, $, which can be
considered as an independent variable. Figure 6 shows such
contribution at 277 K. By considering the extrapolated value to
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FIG. 6. (Color online) Cumulative contributions of phonons to
the thermal conductivity at 277 K from the 18 × 18 × 18 k-point
mesh data. Left plot is according to the wavelengths, and right
plot is according to the MFPs. Both differential and cumulative
thermal conductivities are shown in blue and red, respectively.
For comparison, the extrapolated (to infinite k-point mesh) and
experimental κ are also shown with horizontal lines at 166 and
174 W/mK, respectively.

be 166 W/mK, one can notice that MFPs extend well beyond
10 microns, even at room temperature. Surprisingly, MFPs
longer than 1 micron contribute to almost half of the total
thermal conductivity. One should also note that the range of
MFPs, in Si at least, span over five orders of magnitude from
a nanometer to 100 microns at room temperature. This would
be larger as we go to lower temperatures.

To get an accurate estimate of the thermal conductivity,
one needs to extrapolate the data obtained from a finite
number of k-point mesh, according to Eq. (9). The extrapolated
thermal conductivity versus temperature is plotted in Fig. 7
and compared to the experimental results of Glassbrenner and
Slack29 and Inyushkin et al.34 We can notice that at low tem-
peratures, boundary scattering limits the experimental thermal
conductivity. The agreement is very good in the temperature
range of 100 to 500 K, after which experimental results
decay faster due to higher-order phonon scatterings, which
are 1/T 2 or higher. Our results are within the relaxation-time
approximation, but one could also go beyond and iteratively
solve the Boltzmann equation, as Broido et al. have done.16

They have shown that for Si and Ge, there would be about a
further 10% increase in κ .

To assess the effect of the classical approximation, which is
made in classical MD simulations, we have also compared in
Fig. 8, for a given k-point density, the classical and the quantum
thermal conductivities within the RTA. They are displayed with
symbols on the lines. The quantum one is given by Eq. (16),
and the classical one uses the same expression in which the
Bose-Einstein distribution is substituted by kBT /h̄ω, both in
the heat capacity and in the relaxation time. We can notice
that the difference is small above the Debye temperature, as
expected, but the classical value overestimates the quantum
one by 10% to 20% as the temperature is lowered further.
This is a combination of the larger heat capacity and a
smaller lifetime in the classical case. We have also plotted
the contribution of each mode to the thermal conductivity. We
can note that at low temperatures mainly, the two TA modes
equally contribute to κ , whereas at temperatures above 200 K,
LA and TA modes equally contribute about almost 1/3 of the
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In Ziman’s derivation of Equation (1.40), the auto-correlation is assumed to take the 
form:  
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(1.45) 

 

where L is the correlation length that is a measure of the width of the bumps on the 
surface. In order for the simplified Equation (1.43) to be valid, the roughness has to obey 
the relation L << 4πη . This would mean that the boundary of the system must have 
sufficient areas of steeply sloping facets and is one major assumption of the analysis. 
Further, the analysis treats incoming and scattered waves as if normal to the surface. 
Hence, if the angles of incidence were changed, the specularity parameter would be 
larger. Chapter 3 looks at boundary scattering from a rough surface in more detail, both 
from the theoretical and experimental perspective. 

 
1.2.8 Phonon Coherence Length 

The third important length-scale that is less talked about in the phonon physics 
community is the coherence length of phonons. Let us consider any plane wave with a 
frequency ω . Now consider the superposition of this wave with other planes waves near 
in frequency, with a bandwidth Δω . Depending on the number of plane waves 
interacting with each other, the resultant waves start having a beating frequency and 
eventually collapse into a wavepacket. The coherence length defined for a wavepacket is 
typically considered to be the spread of the wavepacket itself, which is true when the 
superposition consists of waves that are coherent with each other to begin with as shown 
in Figure (1.12a). In the case of phonons, within the energy bandwidth defined by the 
thermal energy ~kBT, the phonons are uncorrelated. Hence, a superposition of these can 
lead to less-localized wavepackets as is illustrated by Figure (1.12b). If we choose to be 
completely rigorous, the phonon thermal wavelength defined as λT ≈ 2πvs kBT  is the 
best indicator for the width of a phonon wavepacket, assuming it is non-dispersive. At 
room temperature, for most solids, considering vg ~ 5000 m/s, λT ~1nm .  
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Figure	  1.12	  (a)	  When	  the	  source	  waves	  are	  coherent	  and	  there	  exists	  a	  fixed	  phase	  
relationship	  between	  them,	  the	  superposition	  is	  a	  wavepacket	  with	  a	  finite	  coherence	  

length	  (b)	  When	  the	  source	  waves	  are	  incoherent,	  the	  superposition	  is	  a	  wavepacket	  with	  a	  
larger	  coherence	  length.	  [Wikimedia	  commons]	  

 

In order to observe any wave effects in phonons, the scattering has to be elastic and 
preserve phase. Phonon-Phonon scattering as described above is inelastic in nature, since 
the resultant phonon after scattering can have no phase-relationship to the incoming 
phonons. In general, any anharmonicity in the crystal would break the phase of two 
interacting phonons and hence not allow the scattering to preserve coherence. Therefore, 
for bulk silicon at room temperature, or any temperature higher than ~ 20K, where 
scattering is dominated by umklapp resistance, the coherence length of phonons is 
actually equal to the particle-based mean free path, larger than the phonon wavelength. 
However, at low temperatures where either boundary or impurity scattering dominates, 
the coherence is preserved and hence the coherence length of the phonons is longer than 
the scattering mean free path. In the case of nanostructures, the boundary scattering 
regime can dominate up to much higher temperatures. Hence, the scenario wherein the 
phonons can scatter as waves from boundaries or impurities are interesting and can lead 
to coherent effects such as phonon localization.  
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1.3 EXPERIMENTS PROBING PHONON LENGTH SCALES 
 

Phonons can therefore behave as particles, while in reality they are lattice vibrational 
waves with a wavelength spectrum as well as coherence length. For bulk solids at room 
temperature, typically the particle mean free path,  ~ O(102

 nm); here O(x) stands for 
order of x. The dominant wavelength, λT ~ O(1 nm) and the strictest coherence length, c
~ O(1 nm) defined as the expanse of a phonon wavepacket with a thermal broadening of 
~kBT around λT . In the case of phonons behaving as dispersive wavepackets, it is 
possible that c > λT . When the dominant scattering mode of phonons is umklapp, c =  . 
However, when the dominant scattering of phonons is due to impurities or the system 
boundary, c >   allowing for the possibility of wave behavior of phonons being 
observed in thermal transport. Typically, in bulk crystals, this condition is satisfied in 
very low temperatures. In nanostructures, the boundary scattering regime is extended to 
higher temperatures, thus opening up the possibility of observing wave effects such as 
localization. 

The huge body of literature with the thermal conductivity of bulk solids is impossible to 
review in this short treatise. It suffices to say that the major physics as described in the 
earlier sections has been observed experimentally from measurements of specific heat, 
the phonon dispersions as well as the thermal conductivity under a variety of conditions. 
A few key experiments that present the importance of the length scales listed above will 
be discussed here as a precedent to the experiments attempted in this work.  

Holland’s review in 1964 [30] provides a comprehensive overview of boundary, impurity 
and umklapp scattering times for bulk samples of Silicon, Germanium, Gallium Arsenide, 
Gallium Antimonide, Cadmium Telluride, and Cadmium Sulfide in the wide temperature 
range from 1.7 to 300K. Silicon is a material of choice for many experimental studies due 
to a variety of reasons. It is easy to manufacture and has wide applications in the 
electronics industry. From a physical perspective, it has very harmonic bonds and is easy 
to manipulate by introducing doping impurities and/or etching to define the system size. 
Thermal conductivity of bulk crystalline-silicon as a function of temperature is given 
below in Figure 1.13. 
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Figure	  1.13	  Thermal	  Conductivity	  of	  Bulk	  Silicon	  as	  a	  function	  of	  temperature.	  The	  variation	  
in	  data	  in	  the	  intermediate	  temperature	  regime	  is	  mainly	  due	  to	  different	  impurity	  

concentrations,	  while	  the	  umklapp	  (high	  temperature)	  and	  boundary	  (low	  temperature)	  
dominated	  regions	  match	  up	  well.	  Figure	  from	  [30].	  

 

Klitsner and Pohl [31] performed a series of careful thermal conductivity measurements 
to gauge the effect of surface roughness and films (either deposited metal or grown 
silicon oxide) on the surface of a clean Silicon crystal in 1987. All of these measurements 
were performed in the temperature range from 0.1-10K, where the dominant phonon 
wavelength ranged from 6.5-650 nm. They found that for rough surfaces, as well as thick 
films on top of Silicon, the surface scattering was diffusive in nature and reduced the 
thermal conductivity substantially as is seen in Figure 1.14 below. 

 

Figure	  1.14	  Thermal	  conductivity	  of	  bulk	  Silicon	  for	  two	  extreme	  cases	  from	  polished,	  clean	  
surface	  to	  a	  sandblasted	  rough	  surface.	  The	  intermediate	  curves	  are	  for	  different	  

thicknesses	  of	  gold	  films	  deposited	  insitu	  on	  a	  clean	  Silicon	  surface.	  Figure	  from	  [31].	  	  
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FIG. 7. Thermal conductivity of Si. 4-M data from Ref. 21,
K-4 data from Ref. 18. Curve A: Callaway equation with z~
=0.86X10 ' sec, A =1.32X10 44 sec', 8~+8~=3.8X10 44 sec/
deg'. Curve 3 same as curve A but A =3.96)&10 44 sec'. Curve C
same as curve A but A =6.60X10 44 secs. Sample K-4 contains
~10's oxygen/cm' and 4-M contains less than 10' oxygen/cm'.

Impurity Effects

Of all the semiconductors studied, we have found
that only in Si and Ge could the maximum in the
thermal conductivity be fitted by using the isotopic
contribution to the impurity scattering relaxation time.
For the materials studied here, the amount of impurity
scattering calculated from the impurity concentrations
listed in Table I, even assuming a mass difference
(635/M)' 1, is orders of magnitude less than the
isotope scattering. Nevertheless, the impurity scatter-
ing must be increased by factors of 2 to 4 over the
values calculated due to the isotopes for all the ma-
terials except GaSb, and for GaSb the impurity effects
are even larger. One point of importance is that the
number of impurities indicated in Table I is, except
for CdS, the number of electrically active impurities.
It is quite possible that other electrically inactive im-
purities, for example, dissolved gases, are responsible
for these large impurity effects. Structural defects'
could also be a cause of impurity scattering.
In each of Figs. 2, 3, and 5, curve B is an attempt

to fit the data by increasing rz '. A comparison be-
tween the theoretical isotope scattering values of 7z,
and the values needed to fit the data near the maximum
are given in Table II. For CdS, curve B in Fig. 6
includes an increase in boundary scattering as well as
impurity scattering. Curve D of Fig. 3 is a fit to GaAs-3
also using an increase in both v.z ' and 7-~ '. An attempt
to fit the data on GaSb using Eq. (1) and theoretical
values of ~z and 7-~ resulted in values several orders
of magnitude higher than the experimental points, so

that no further fitting was attempted using this
formalism.
Even with increased values for 7-z ' and, in some

cases 7& ', the fits are, in general, good only in the
region from the lowest temperatures to just above the
thermal conductivity maximum. In all cases except
GaSb, this is partly due to the presence of dips in the
data in this region.

RM T
7R '=

(~ 2 ~2)2+ (Q/~)2~2~ 2
(2)

where R is a proportionality constant containing the
concentration of impurities causing the resonance
scattering, coo is the resonance frequency, and 0 de-
scribes damping of the resonance.
For KCl containing KNO2, dips were found near

4 K and the curves could be fitted using m=0 in Eq.
(7). For KC1 containing Kl, NaCl, CaCls, etc., the
dips appeared above the conductivity maximum and
the curves could be fitted using m=2."
Wagner" has shown that the form of Eq. (7) with

e=0 can be obtained by considering inelastic scattering
of phonons by localized modes, in which the impurity
centers are polyatornic. For monatomic impurities the
form of the relaxation time is more complicated than

Resonance Scattering
The results of Pohl and Walker"" on resonance

scattering mechanisms indicate that the dips present
in the data at temperatures just above the maximum
in ~ are also associated with impurities. In fact if one
examines the older data on Si," a similar dip can be
noted. It was only when the oxygen was removed from
the Si that the dip disappeared from the data and the
isotope scattering could be used to obtain a good 6t.
This effect of oxygen on the thermal conductivity of
silicon can be seen more clearly in Fig. 2. Curve A is
an attempt to fit the data on the oxygen-doped silicon
using the theoretical values of boundary scattering
and isotope scattering and the phonon-phonon pa-
rameter Bt+Bs=3.8X10 '4 sec deg '. This curve can
be seen to fit the data on oxygen-free silicon very
closely. Curves B and C are obtained by increasing the
impurity scattering term by factors of three and five,
respectively. From this figure it appears that once
the dip was eliminated, by removing about 10'~ oxygen/
cm', the problem of an unaccountably large amount
of impurity scattering disappeared. Curves B and C
are similar to the curves obtained using increased im-
purity scattering for GaAs, InSb, CdTe, and CdS.
Since the data on each of these samples also show a
dip, we deduce that the increased impurity scattering
is probably associated with resonance scattering.
Data which can be characterized as having a bump

or dip can often be fitted by using a resonance-type
relaxation time of the form first used by Pohcy. "
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While the surface roughness was not characterized, one can imagine that as long as the 
sand blasted roughness did not have a rms height, δ < 6.5nm , Ziman’s specularity rule 
given in Equation (1.43) would result in diffuse surface scattering with p~0. The thin 
films of gold played the role of scrambling the phonons diffusively due to a large 
acoustic mismatch as well as surface disorder generated during film creation. Thus, they 
noticed that while surface morphology can affect thermal transport, scattering was 
diffusive and closely matched what was predicted by Casimir’s theory like in Equation 
(1.39). 

In the 1990s, thin film Silicon-On-Insulator technology allowed preparation of two-
dimensional films of high quality silicon and Ju et. al and Asheghi et. al. measured the 
thermal properties in 1997-99 [32], [33]. They beautifully illustrated how the mean free 
path of phonons in Silicon at room temperature is around 300 nm, an order of magnitude 
larger than what is predicted by kinetic theory of gases. This was the first foray of the 
thermal community into nanostructures that were close to the important length-scales 
defining transport. The films were designed to be of a thickness close to the mean free 
path,   and the authors observed a 50% reduction in thermal conductivity due to 
boundary scattering. Further, Fuchs-Sondheimer theory was used to correctly predict the 
reduction in the diffusive mean free path [34] that scaled with the thin film thickness. 

In 2003, Li et. al. [35] studied thermal transport in quasi one-dimensional Silicon 
Nanowires. The scattering mean free path was found to scale with the diameter, and 
followed the Casimir Limit as seen in Figure 1.15 below, except for the smallest 22nm 
diameter nanowire. They achieved an order of magnitude reduction in thermal 
conductivity at room temperature. 

Figure	  1.15	  Thermal	  Conductivity	  of	  Smooth	  Silicon	  Nanowires	  exhibiting	  diffusive	  
boundary	  scattering	  following	  the	  Casimir	  theory.	  Figure	  from	  [35].	  

 

A more interesting discovery was made in 2008 when Hochbaum et. al. found that 
nanowires with rough surfaces had an additional reduction in thermal conductivity by a 
factor of 5-10 for the same diameter wires [36]. In particular, the 56 nm diameter 
nanowire showed a thermal conductivity of 1.6 W/m-K at 300K, which is ~100 times 
smaller than the thermal conductivity of bulk Silicon at the same temperature.  

branes each suspended by five SiNx beams that are 420 !m
long and 0.5 !m thick. A thin Pt resistance coil and a sepa-
rate Pt electrode are patterned onto each membrane. Each
resistor is electrically connected to four contact pads by the
metal lines on the suspended legs, thus enabling four-point
measurement of the voltage drop and resistance of the resis-
tor. Each Pt resistor can serve as a heater to increase the
temperature of the suspended island, as well as a resistance
thermometer to measure the temperature of each island.

The Si nanowires were synthesized by the vapor–
liquid–solid method,11 in which Au clusters were used as a
solvent at high temperature. The Si and Au formed a liquid
alloy and when the alloy became supersaturated with Si, Si
nanowires grew by precipitation at the liquid–solid interface.
A high-resolution transmission electron microscopy "TEM#
investigation "see Fig. 2# showed that the Si nanowires were
single crystalline and grew along the $111% direction. The
wire diameters fell in the range of 10–200 nm and the
lengths were several microns.

Once synthesized, the nanowires were first dispersed in
isopropanol by sonication, and then drop cast onto suspended
heater devices. After drying the solvent, we found that an
individual nanowire often bridged the two islands. In order
to improve thermal contact between the wires and the sus-
pended devices, amorphous carbon films were locally depos-
ited at the nanowire–heater pad junctions with a scanning
electron microscope "SEM# as shown in the inset of Fig. 1.

All the measurements were carried out at a high vacuum
level of &2!10"6 Torr and temperature ranging up to 320
K to suppress residual gas conduction and radiation loss. A
detailed description of the measurement technique and un-
certainty analysis is summarized elsewhere.12,13 Briefly, bias
voltage applied to one of the resistors, Rh , creates Joule
heating and increases the temperature, Th , of the heater is-
land above the thermal bath temperature, T0 . Under steady
state, part of the heat will flow through the nanowire to the
other resistor, Rs , and raise its temperature, Ts . By solving
the heat transfer equations of the system,13 denoting the ther-
mal conductance of the wire Gw and the suspending legs Gl ,
we have

Th#T0$
Gl$Gw

Gl"Gl$2Gw#
P

and

Ts#T0$
Gw

Gl"Gl$2Gw#
P ,

where P#I2(Rh$Rl /2). Here Rl is the total electrical lead
resistance of Pt lines that connects the heater coil. From the
slopes of Th and Ts vs P , the thermal conductivity of the
bridging nanowire can be estimated after considering the di-
ameter and length of the wires. In the experiments, the I–V
curve is measured as the dc current I is slowly ramped up to
a value in the range of 6–12 !A depending on T0 . The
maximum power dissipation on the heating membrane is be-
low 1 !W and the maximum rise in temperature on the heat-
ing side is below 5 K.

The measured thermal conductance includes the thermal
conductance of the junction between the nanowire and the
suspended islands in addition to the intrinsic thermal conduc-
tance of the nanowire itself. We have estimated the thermal
conductance of the junctions with the carbon deposition, and
found that the junction contribution is less than 15% of the
total thermal transport barrier.13

Shown in Fig. 3"a# are the measured thermal conductivi-
ties for intrinsic single-crystalline Si nanowires of different
diameters "22, 37, 56, and 115 nm#. Compared to the thermal
conductivity of bulk Si,14 there are two important features
that are common to all the nanowires we measured: "i# The
measured thermal conductivities are about two orders of
magnitude lower than that of the bulk and, as the wire diam-
eter is decreased, the corresponding thermal conductivity is

FIG. 2. High-resolution TEM image of a 22 nm single crystal Si nanowire.
The inset is a selected area electron diffraction pattern of the nanowire.

FIG. 3. "a# Measured thermal conductivity of different diameter Si nanow-
ires. The number beside each curve denotes the corresponding wire diam-
eter. "b# Low temperature experimental data on a logarithmic scale. Also
shown are T3, T2, and T1 curves for comparison.

2935Appl. Phys. Lett., Vol. 83, No. 14, 6 October 2003 Li et al.
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Figure	  1.16	  (a)	  Comparison	  of	  thermal	  conductivity	  of	  rough	  EE	  Silicon	  Nanowires	  [36]	  and	  
smooth	  VLS	  Silicon	  Nanowires	  [35]	  	  (b)	  TEM	  picture	  of	  smooth	  VLS	  NWs	  (c)	  TEM	  picture	  of	  

rough	  EE	  NWs	  
	  

The roughness of the nanowires was not characterized and no systematic study was done 
on the morphology of the nanowires to understand the origin of this reduction below the 
Casimir Limit. One possibility that allows this reduction in thermal conductivity is when 
phonons behave as waves instead of particles, thus deviating from the well-accepted 
Casimir theory. If true, the surface allows for coherent scattering of the phonon waves, 
thus localizing the phonons and impeding their transport. In this thesis an attempt has 
been made to characterize carefully nanowires with rough surfaces and understand the 
effect this has on measured thermal conductivity and will be dealt with in detail in 
Chapter 3. 

An interesting phenomenon that was pioneered by Humphrey Maris [37–39] was the 
effect of crystal direction on the thermal conductivity. They measured Silicon and 
Calcium Flouride in the temperature range 3-40K and found that in the boundary 
scattering regime, crystal orientation could account for upto 50% difference in the 
measured thermal conductivity. What resulted was a seminal understanding that in 
anisotropic crystals, the phonon phase and group velocities were not the same and 
resulted in an effect called phonon focusing due to elastic anisotropy. In this case, the 
energy flow was directed along certain crystallographic directions, which were 
experimentally matched up with the rod axes. The authors also provided a correction to 
the Casimir Limit as a function of the rod geometry in the diffusive regime. Interestingly, 
they also observed a deviation towards specular scattering from the surface at lower 
temperatures. Inspired from these studies, in Chapter 4 we explore the directional 
dependence of thermal conductivity in nanowires of semi-metallic Bismuth. 
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Figure	  1.17	  (a)	  Phonon	  focusing	  as	  illustrated	  by	  McCurdy,	  Taylor	  et.	  al.	  [39]	  A	  deviation	  of	  
the	  group	  velocity	  directions	  given	  by	  

v from	  the	  phonon	  wavevectors	  

k allows	  focusing	  of	  

energy	  flow	  in	  directions	  perpendicular	  to	  the	  rod	  axis	  compared	  to	  an	  isotropic	  solid.	  (b)	  
Phonon	  Imaging	  showing	  different	  intensities	  of	  energy	  flux	  in	  different	  directions	  in	  a	  

Germanium	  crystal	  at	  ~2K.	  Image	  adapted	  from	  Northrop	  and	  Wolfe	  [40]	  
	  

These experiments mostly alluded to phonon transport in the diffusive regime.  At the 
other end of the spectrum, many novel experiments have been devised that strive to 
achieve coherent generation of phonons in order to study their scattering behavior. 
Thermal phonons typically lie in the 1-10 THz (1012 Hz) frequency bandwidth in most 
solids. Such frequencies are difficult to access for actuators of phonons. In the subsequent 
section, we will briefly review methods that have been established to generate coherent 
non-equilibrium phonons. These phonons are non-equilibrium since they do not relax to 
their equilibrium state due to scattering inside the material like thermal phonons do. 
However, they provide a powerful tool towards understanding spectral scattering when 
wave nature of phonons is dominant, especially in nanostructures as is the focus of this 
work.  

The first experiments on generation of coherent phonons were done in the microwave 
frequency range [41] by using piezoelectric thin film transducers. The conversion of 
electric pulses to mechanical vibrations mainly functioned in the GHz (109 Hz) frequency 
range, with wavelengths typically in the sub-micrometers. Such ultrasonic tools were 
mainly used in the 1960s to probe how matter and light scattered differently in materials. 
Maintaining coherent transport of these piezoelectric driven waves was very difficult 
however, since their interaction with thermal phonons of much shorter wavelengths 
randomized their phase.   

Van Gutfeld and Nethercot in 1964 [42] pioneered the use of thin metal films as a source 
of incoherent phonons based on their temperature.  They deposited a thin film of metal on 
the material and activated it electrically or optically.  The heating of the film (Au or Cu) 
resulted in the emission of a broadband radiation based on Planck’s blackbody frequency 
spectrum.  The experiments were performed at ~10K, which based on Wien’s 
Displacement law gave peak values of frequency at ~0.6 THz.  Such metals are very 
efficient sources of high frequency phonons, which are however not monochromatic.  
The phonons are detected on the other side using a thin film bolometer, which has a small 
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FIG. 4. Regions of negative (shaded) and positive J
on the constant-energy surface for (a) TA and (b)
c ines of mathematically infinite phonon flux for the
x-y scan in Fig. 8(b). TA&, solid line; TA&, dashed
lines. The axes of the graph are projections onto the
(001) plane, ~=tan0„sin(y„+a/4) and s =tan&„eos(y
+~/4).
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FIG. B. (a) Integrated TA phonon intensity for succes-
sive horizontal scan lines across the crystal. (b) Image
of the ballistic phonon intensities. The digitally recorded
image has been displayed on a storage oscilloscope and
photographed. From left to right the picture spans 50
in propagation direction. The bright regions are direc-
tions that result from more than one k vector. The
still bri hte bg r boundaries of these regions correspond
to the integrable infinities in the phonon flux. (c) Mag-
nification of central region of Fig. P(b). (d) Contour
map of Fig. B(c) defining curves of constant intensity.

k=k~6=k~L9„,y~~ as expressed in spherical coordi-
nates. V is determined by differentiating the
a(k) obtained from Eq. (2). Thus

cos 6 „=f(cos 6» q, ); y„=g(cos ~» y„).
To obtain the functions f and g, we have used a
convenient form of V recently derived by Every"
from Eq. (2). For a given solid angle bQ„=
=d(coso„)dy„ofk vectors there is a correspond-
ing solid angle EQ„=d(cos8„)dy„subtendedby
the corresponding V vectors. The phonon flux '

enhanced by a factor A =
~
b,Q, /b, Q „~over that for

an isotropic medium, as given by th J b'e aco ian of

AQ„&f/Bcos9 &f/&q-"-= det.Q-„'=;/ ...e, ;,/. ,', -=

%e have found that the sign of this Jacobian is
particularly useful in deciphering the phonon flux
pattern. For a given (g„y,), the sign of J de-
pends upon whether the constant-energy surface
is concave (positive J), convex (positive J), or a
saddle region (negative J). A strong enhancement
in flux is expected whenever J=0, corresponding
to the border between negative- and positive- J
regions. Results of the actual computation for
both TA modes in Ge are plotted in Figs. 4(a) and
4(b). The shaded sections of the constant-energy
surfaces are regions of negative J, and the bor-
ders of this region correspond to strong focusing.
The locus of J=O points is mapped into a curve in
V space by the transformation of Eq. (3). The re-
sults are plotted in Fig. 4(c), which shows lines
of J=O for the x-y scan in our experiment. For
the TA, mode there are two types of branches:
(a) four right-angle vees corresponding to the
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specific heat and thus heats up very rapidly. The resistance of this bolometer can be 
calibrated and is a strong function of its temperature. The measurements were done at 
very low temperatures ~1.6K [43]. Interestingly, the pulses traveled through the samples 
at velocities equal to the speed of sound. The reason behind the high pulse velocities is 
that not enough equilibrium phonons are present in the sample at low temperatures to 
scatter the non-equilibrium phonons, thus travel of these pulses was ballistic, while they 
coupled to the compression and shear waves inside the crystal.  Further, these 
experiments allowed isolation and identification of different phonon modes inside the 
crystal (Transverse and Longitudinal) as a function of their differing velocities. 
Following the experiment on bulk Silicon rods performed by Taylor et. al. in 1969, 
phonon optics were extremely useful in showing phonon focusing effects.  Northrop and 
Wolfe used an extremely thin Aluminum film bolometer as a phonon detector coupled 
with a xy raster scanned laser beam and were able to provide a two-dimensional map of 
phonons focusing in different crystallographic directions as shown in Figure 1.17 (b) 
[40]. 

The drawback of using thin film metal transducers was the broadband phonon 
wavelengths at the source.  This problem was circumvented by using Superconducting 
Tunnel Junctions (STJs) developed in the 1970s by sandwiching an extremely thin 
insulating layer (~2 nm) in between two thin superconducting films (~100 nm) [44]. In 
brief, when a voltage is applied across the sandwich, eV > 2Δ - where 2Δ is the 
superconducting gap - the electrons injected across the STJ transfer their energy to 
phonons in the lattice.  This energy bandwidth is extremely narrow, thus producing a 
monochromatic source of phonons that deviates strongly from the Bose-Einstein 
Distribution.  These phonons were generally in the 1011 Hz regime.  These systems 
opened up a whole range of possibilities to study phonon optics, ranging from the design 
of phonon filters [45], second sound in Bismuth and NaF [46], as well as studies on 
resonant phonon absorption [47] to name a few. 

One of the more interesting works that has inspired study of coherent thermal transport 
and is a subject of intense scrutiny in the thermal transport community was the prediction 
and observation of phononic mini-bands in AlAs-AlGaAs MBE-grown superlattices [45].  
The artificial periodicity of ~12 nm is less than the phonon mean free path,   and 
comparable to the dominant phonon wavelength, λD .  This causes a change in the 
acoustic phonon-dispersion relations. In the cross-plane direction in real space, the unit 
cell is now larger and hence the reciprocal space Brillouin Zone is smaller thus causing 
zone folding and hence a decrease in the group velocity of acoustic phonons due to 
flattening of the high-frequency phonon modes.  Hence, when the phonon wavelengths 
are close to the superlattice spacing, given by λ0 = 2d , the phonons behave as Bragg 
reflectors.  Thus, the superlattice structure was shown to behave as a phonon cavity, 
establishing the methodology for future studies of phonon-based optics.   
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Figure	  1.18	  For	  frequencies	  of	  the	  STJ	  phonons	  corresponding	  to	  λ = 2d ,	  the	  transmission	  
drops	  by	  ~80%.	  	  The	  device	  structure	  is	  shown	  in	  the	  inset.	  Figure	  adapted	  from	  [45]	  	  

 

In the recent two decades, much progress has been made in utilizing this understanding of 
phonon length-scales learnt from coherent generation and control of phonons and 
applying them directly to heat transport measurements of nanostructures.  For example, 
the measurement of the cross-plane thermal conductivity of Bi2Te3/Sb2Te3 superlattices 
by Venkatasubramanian [48] showed a minimum in thermal conductivity at superlattice 
spacing d~6.5-7.5 nm at 300K, which can be compared to the decrease in transmission as 
observed in Figure 1.18.  The mechanism and repeatability of this measurement is 
debatable, especially since chalcogenides have been known to have a mean free path of 
the order of ~1 nm.  The theory proposed indicates coherent correlated scattering from 
the interfaces and indicates wave-like behavior of acoustic phonons, either due to phonon 
localization or due to the formation of phononic mini-bands. 

A controlled study of spectrally dependent scattering was performed by Kim et. al. [49]  
where ErAs nanoparticles embedded in InGaAs alloy showed a decrease of thermal 
conductivity below the alloy limit.  The mechanism that explained this behavior was that 
the short wavelength phonons in the alloy are scattered effectively by impurities and 
defects, whereas the long wavelength phonons are transparent to these.   This stems from 
the Rayleigh approximation as discussed in Equation (1.38) where the scattering cross-
section is given by: σ ~ b6 λ 4 where b is the typical size of the scattering center, ~1Å for 
particles.  Since the small wavelength phonons are scattered well in alloys, the major 
contribution to thermal conductivity comes from mid- and long-wavelength phonons.  
These longer wavelength phonons were effectively scattered by embedded nanoparticles 
with a few nanometers in diameter and reduced the thermal conductivity even below the 
alloy limit. 
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ter. The filtering action arises from selec- 
tive reflection by the superlattice of pho- 
nons of wavelength Ao that fulfill the 
Bragg condition A, - 2dS where d is the 
superlattice period (33) In view of the 
close analogy with optical dielectric mir- 
rorsS an appropriately designed thin-film 
heterostructure superlattice may be 
called a dielectric phonon mirror. Be- 
sides the frequency selectivity, one of 

the most significant results is the obser- 
vation that high-frequency phonons pass 
through the more than 100 interfaces of 
the multilayer structure without signifi- 
cant degradation. 

The reflection of phonons propagating 
normal to the interface between two 
elastic media of different acoustical im- 
pedances Zl and Z? is analogous to the 
reflection of electromagnetic waves at 

the interface between two optical media 
with different indices of refraction n1 and 
n2. To calculate the phonon transmission 
properties of a multilayer stack, we fol- 
lowed the mathematical procedures out- 
lined in classical optics textbooks (34). 
The acoustic properties of each semicon- 
ductor layer are expressed in terms of a 
characteristic matrix. The superlattice is 
then described as an equivalent layer and 
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In summary, early studies on thermal conductivity typically proved that the Casimir 
Limit of diffusive scattering was mostly valid for boundary scattering from bulk samples 
at high temperatures.  At very low temperatures, some signatures of specular wave-like 
scattering were observed.  Phonon optics provided a valuable tool to study different 
properties of how phonons traveled as waves in solids at very low temperatures.  The 
advent of nanotechnology allowed design and creation of novel structures with 
characteristic lengths of the order of the mean free path of phonon scattering.  However, 
the ultimate limit of nanostructure sizes close to dominant phonon wavelengths has 
seldom been reached.  The next wave of discovery in phonon physics surely lies in 
pushing the limits of transport beyond the particle picture and observing and 
manipulating phonons as waves.  This could come from spectral coherent scattering from 
the surface, an approach that is explored in Chapter 3 of this thesis.  Further, studying 
crystal direction-dependent heat transport in nanostructures pushes the envelope further, 
as shown in Chapter 4.  Finally, the role of electron-phonon coupling has not been 
touched in this introduction, as the focus has remained on dielectric solids.  In Chapter 5, 
we will briefly look at the basics of electron-phonon interactions and how that might lead 
to interesting effects and the creation of solid-state thermal devices.  But first, we will 
look at the measurement platforms, their design and implementation in Chapter 2. 
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CHAPTER 2 
 

THERMAL 
MEASUREMENT 
TECHNIQUE  
 

In this chapter, we will look at the thermal measurement technique for single nanowires.  
After describing the basic principle of measurement, we will then study the limits and 
major sources of error in the measurement, namely contact resistance and sensitivity. 
Finally, we will address the contact resistance problem in a novel fashion by showing that 
monolithic contact between the nanostructure and the measurement system can eliminate 
this problem altogether.  

Section 2.2.4 of this chapter first appeared in Nano Letters, Vol. 10, No. 11, 4341-4348 
(2010) [50]. (Note, the whole paper has not been reproduced, only certain relevant 
sections have been included)  

Title: Fabrication of Microdevices with Integrated Nanowires for Investigating Low-
Dimensional Phonon Transport 

Authors: Kedar Hippalgaonkar*, Baoling Huang*, Renkun Chen*, Karma Sawyer, Peter 
Ercius, and Arun Majumdar. 
*equal contribution 

Reprinted with permission from Nano Letters. Copyright 2010 American Chemical 
Society. 
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2.1 THERMAL MEASUREMENT OF ONE-
DIMENSIONAL STRUCTURES 

 

The technique to measure thermal properties of nanostructures has been pioneered by 
Prof. Arun Majumdar’s group since 2003.  The design and fabrication of these novel 
devices was made in 2001 by Prof. Philip Kim and Prof. Li Shi, used for measuring the 
thermal conductivity of carbon nanotube bundles [51].  Subsequently, the measurement 
has been refined and improved with different measurement schemes serving different 
purposes.  While the first few attempts were made in order to make the system adaptable 
to different materials [35], [52], [53], progress was also made in measuring the electrical 
and thermal properties of nanowires simultaneously [54].  

Measuring the thermal conductivity of nanostructures is a challenging task that entails the 
use of microfabrication techniques to create a measurement platform that interfaces with 
the nanostructure.  For one-dimensional nanowires, a direct technique is employed where 
a temperature gradient (Thot – Tcold) is maintained across the nanowire and the heat flow 
through the nanostructure (Qnanowire) is measured accurately. A Scanning Electron 
Micrograph of a measurement device is shown below: 

 

Figure	  2.1	  Microfabricated	  Thermal	  Measurement	  Platform	  with	  nanowire	  suspended	  
between	  the	  membranes.	  

	  
Two suspended platforms are micro-fabricated and released from the supporting substrate 
via chemical etching.  The detailed micro-fabrication steps can be found elsewhere [50], 
[55]. The suspended legs act as a connection to the silicon chip and are treated as heat 
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leakage paths from the suspended platforms.  An individual nanowire is then transferred 
to a silicon micro-device so as to form a bridge between the two parallel, suspended SiNX 
membranes, each consisting of micro-fabricated symmetric resistive Pt coils, for thermal 
and electrical transport measurements (Fig. 2.1). The Pt coils are used as both heaters and 
resistive thermometers. A resistive heater is used to heat the whole Si chip uniformly 
inside a cryostat to control the global device temperature.  For thermal conductance 
measurements, a small DC current (~6 µA) is passed through the Pt coil on one of the 
membranes to heat it to a temperature, Thot, above T0, thus inducing a heat flow Qnanowire 
through the nanowire to heat up the other membrane to Tcold. An AC current of 500 nA is 
passed through the Pt coils on both membranes to determine its electrical resistance 
through a 4-point technique, which is then used to estimate the temperatures Thot and 
Tcold. Using two SRS 850 lock-in amplifiers for the AC signals, signals from the sensing 
side were measured using a frequency of 199 Hz whereas that for the heating side utilized 
1.11 kHz. The resistance of the patterned coils, Rhot and Rcold vary between 3 and 5 kΩ at 
room temperature for different devices and are linearly proportional to the temperature on 
the pads. Following the analysis of Shi et. al. [52] the thermal conductance of the 
Platinum beams that suspended each platform can be described as follows: 

 Gl = P
ΔTh +ΔTs( )  (2.1) 

 

Here, a known power P was supplied to the Pt coil heater on one SiNx membrane which 
also takes into account heat losses through the supporting legs, while resistance changes 
of the heater and sensor were used to determine the resulting temperature changes of the 
heater (∆Thot =Thot-T0) and sensor (∆Tcold=Tcold-T0) pads. Utilizing the diffusive heat 
transfer equation while accounting for uniform joule heating in the SiNx legs that 
suspended the platforms, it can be shown that 

 P = Ih
2 Rhot + Rleg( )  (2.2) 

 

Here Ih is DC current supplied, Rhot ~ 3kΩ  is the resistance of the Platinum coil on the 
heating side and Rleg ~ 3kΩ  is the electrical resistance of one out of six SiNx legs that help 
suspend each platform.  Note that the power P only shows the resistance of one 
suspended leg carrying the heating current, while the Joule heat from the other heating 
leg is utilized in maintaining temperature equilibrium. A detailed fin analysis can be 
performed with isothermal boundary conditions at the ends of each heating leg to observe 
this At 300K, we can estimate that the heat loss through the SiNx legs using Equation 
(2.1) is Gl ~100nW K . 

As an illustration, for an actual thermal device where the heating current is 6 µA, 
Rh = 3.336kΩ , Rl = 3.340kΩ , with a nanowire placed across the heating and sensing pads, 
we obtain ΔTh = 2.49K  and ΔTs = 0.96K , which results in a leg conductance of 
Gl ~ 69.5nW K . Note here that using a 500 nA rms AC current on the heating and sensing 
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pads to measure the resistances thus only gives a temperature rise on either membrane of 
ΔTh,AC = ΔTs,AC ~10mK , which is below the temperature fluctuations in the cryostat and 
only causes an additional increase in temperature excursion of ΔTAC ΔTs ~10mK 1K ~1% . 

Further, the heat flow through the nanowire, Q can be determined as a function of ΔT = 
Th – Ts, which is typically maintained within a few Kelvin.  The thermal conductance Gw 
of the nanowire can hence be determined from ∆Th and ∆Ts with the use of the relation 

 
Gw =

P
ΔTh −ΔTs

ΔTs
ΔTh +ΔTs

#

$
%%

&

'
((  

(2.2) 

 
The DC power input, P is known to a very high accuracy (<0.5%), while the temperature 
measurement uses the temperature coefficient of resistivity (TCR) of the Platinum thin 
film on either membrane(<2%) (see Appendix 2A for error analysis). 

  
 

In the thermal measurement scheme, the conductance of the beam is determined by 
ramping up the temperature in a stepwise (50 steps) fashion by passing a DC current (0-
8µA) through the PRT on the heating membrane.  The rise in temperature on either side 
is monitored by measuring the resistances, Rs and Rh on both platforms, as seen in Fig 2.1 
below. For a Platinum Resistance Thermometer (PRT) in the temperature range of our 
measurement (50K-300K), the resistance changes linearly with temperature:   
 

 
 

 

and 
 

 
(2.3) 

 

Since the rise in temperature is proportional to the supplied power through Ih,
. 

 

ΔRs = Rs − Rs,G( )∝ Ts −TG( ) = ΔTs

ΔRh = Rh − Rh,G( )∝ Th −TG( ) = ΔTh

ΔTh ∝ Ih
2Rh,G andΔTs ∝ Ih

2Rh,G
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Figure	  2.2	  Rs	  and	  Rh	  as	  a	  function	  of	  the	  heating	  current,	  Ih.	  Resistance	  is	  proportional	  to	  
temperature,	  which	  in	  turn	  is	  proportional	  to	  the	  power	  supplied	  by	  joule	  heating.	  	  Thus,	  

the	  resistance	  has	  a	  quadratic	  dependence	  on	  Ih	  
 

Following the analysis of Equation (2.2), the heat flow in the nanowire can be estimated 

as: , where is a non-dimensional ratio of the resistance of the PRT 

and the resistance of the suspended legs.  is a constant at all temperatures.  The 
nanowire conductance can hence also be written as 
 .  

  
Gw =

Q
ΔTh −ΔTs

 
(2.3) 

Further, the thermal measurement technique only measures a two-probe conductance, 
which includes thermal contact resistance between the beams and the membrane.   

2.2 IMPACT OF THERMAL CONTACT RESISTANCE 
 

2.2.1 Thermal Contact Resistance 

Since we measure the two-probe thermal conductance of the nanowire, it is impossible to 
eliminate the effect of thermal contact resistance.  In the measurement scheme described 
above the heat transfer through the nanowire can be described by a thermal circuit as 
drawn below: 
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Figure	  2.3	  Thermal	  Contact	  Resistance	  Network	  
 
Here, Rc,h  and Rc,s represent the thermal contact resistances on the heating and sensing 
sides respectively, while Rw = L k.A  represents the thermal resistance of the nanowire 
suspended in between the membranes.  While Th and Tc are measured accurately using the 
patterend Platinum Resistance Thermometers, the intermediate temperatures given by Th,c 
and Tc,c are unknown. Hence, in reality,  

 
Qw =

Th −Tc
Rc,h + Rw + Rc,s( )

 
(2.4) 

 
which results in a non-ideal value for the measured resistance, !Rw =Qw Th −Tc( ) . 

It is important to realize that the contribution of contact resistance between the nanowire 
and the suspended membrane to the total measured thermal resistance can vary depending 
on not only the quality of the contact, but also the temperature drop across the nanowire 
itself [56]. Consider the following two extreme scenarios: 

(1) Rc >> Rw : This can happen in two cases: 

1a. If the contact between the nanowire and the membrane is not of a good quality, then 
the maximum temperature drop will occur at the contacts and the measured thermal 
conductance is only that of the contacts and not the nanowire.   

1b. If the intrinsic thermal conductance of the nanowire is very high, then the temperature 
drop across the nanowire, ΔTw =Tc,h −Tc,c  is much smaller than the temperature drop at the 
contacts, Th −Tc,h  and/or Tc,c −Tc .  This scenario is material-dependent, since the thermal 
drop across the nanowire is defined as Rw = L k.A , where L is the length of the suspended 
part of the nanowire between the two membranes, k is the intrinsic thermal conductivity 
of the nanowire to be measured and A is the cross-sectional area of the nanowire in 
question.   

(2) Rw >> Rc : This is the ideal scenario where the contact resistance is negligible and 
most of the temperature drop occurs between the nanowire ends and almost none at the 
contacts.  In reality, this situation can be achieved by carefully selecting the nanowire 
geometry (larger lengths and smaller cross-sectional area) in addition to ensuring good 
contact between the nanowire and the suspended membrane. Traditionally, the contact 
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resistance has been alleviated by using Focused Ion/Electron Beam Induced Deposition 
(F(I/E)BID) of a Pt/C composite, which (a) increases the contact area between the 
nanowire and the suspended membrane and (b) fills in any air gaps in the dry interface at 
the points of contact with the organometallic Pt/C substance.   It has been shown 
previously that the total measured thermal resistance (including the contact) can be 
reduced by 10-15% by depositing this composite using the F(I/E)BID [35], [36], [53], 
[54], as is shown below in Fig. 2.4. 

Figure	  2.4	  (a)	  Silicon	  Nanowire	  suspended	  between	  the	  heating	  and	  sensing	  membranes	  (b)	  
Same	  Silicon	  Nanowire	  after	  Focused	  Electron	  Beam	  induced	  Pt/C	  deposition	  

	  
 
2.2.2 Estimating Thermal Contact Resistance 

In order to estimate the effect of contact resistance, we follow the analysis in Yu et al. 
[53] and approximate the contacts between the beam and the membrane as rectangular 
fins.  The thermal contact resistance Rc can be approximated as [57]: 

 
Rc =

1
4
⋅

1

hPkAc tanh hP
kAc
Lc

"

#
$

%

&
'

  
(2.5) 

 

where h (W/m2K) is the lateral heat transfer coefficient between the nanowire and 
Platinum contact on the pads, P is the effective perimeter of contacts performing as fins 
(the nanowire touches the membranes at the Platinum electrodes, each Lc in width as 
shown in Fig 2.5(b,c)), k is the thermal conductivity of the nanowire and Ac is the cross-
sectional area of the nanowire.  Note here that we have considered two different 
geometries for the nanowire: circular and rectangular. For the circular case, Ac = πd

2 4
and when rectangular, Ac = w ⋅ l . Let us approximate h ≈ k I LI [53], where kI  is the 
estimated thermal conductivity and LI is the length of the ill-defined interface between 
the nanowire and the Pt electrodes on the suspended membrane, as illustrated by Fig 
2.5(c) in black.  In order to determine the maximum possible thermal contact resistance, 
Rc, let us consider the scenario where the interface is sandwiched between the nanowire 
and the Platinum electrode, as illustrated in Figure 2.5(c).   
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Figure	  2.5	  (a)	  A	  representation	  of	  the	  typical	  geometry	  of	  nanowires.	  (b)	  Top	  view	  Scanning	  
Electron	  Micrograph	  of	  a	  rectangular	  cross-‐section	  nanowire	  geometry	  and	  Pt/C	  Focused	  
Ion	  Beam	  Induced	  Deposits	  (FIBID)	  to	  improve	  thermal	  contact	  resistance	  and	  also	  provide	  
electrical	  contact	  to	  the	  Platinum	  electrodes	  on	  the	  suspended	  membranes.	  (c)	  Cross-‐
section	  diagram	  of	  each	  of	  four	  contacts	  between	  the	  nanowire	  (grey)	  and	  the	  Platinum	  

Electrode	  (blue)	  on	  the	  suspended	  membrane,	  with	  the	  interface	  (black).	  	  The	  length	  of	  the	  
interface	  is	  defined	  as	  LI,	  and	  the	  overlap	  between	  the	  nanowire	  and	  the	  Platinum	  Electrode	  

is	  defined	  as	  Lc.	  Both	  rectangular	  and	  circular	  cross-‐sections	  are	  illustrated.	  
	  

In the circular case, one can approximate line contact with a length of Lc whereas when 
the nanowire cross-section is rectangular, the area of contact is given by w*Lc. The 
unknowns in Equation 2.5 are thus: kI and LI.   

a) Interface conductivity, kI: The worst scenario is all-vacuum contact, which is avoided 
by doing a tilted SEM and ensuring that the contact between the nanowire and Pt 
electrode is good.  Especially once the FIBID based Pt/C composite is placed on the 
electrode, the area is observed with with tilted SEM to be filled.  Hence, the realistic 
lower limit is Pt/C composite with 30% Pt.  This is an organometallic, with Pt 
particles joined by an organic substance [58] and is known to resemble metal powders 
with 30% porosity (air gaps), which has a lower limit of thermal conductivity of kI =1 
W/m-K at room temperature [59]. In the other extreme, the best-case scenario in the 
limit of perfect contact, is the Pt thermal conductivity itself, which is 20-30 W/m-K 
depending on the grain sizes for thin film Platinum. 

b) Length of the interface, LI: The length of the contact can be approximated to span 
values from 1 nm to 10 nm as an extreme case. 
 

This calculation has been performed for the case of a circular carbon nanofiber by Yu et. 
al. [53] and is reproduced below in Fig 2.6. 
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Figure	  2.6.	  Thermal	  Contact	  Resistance,	  Rc	  estimated	  for	  a	  carbon	  nanofiber	  using	  Equation	  
2.5	  for	  LI	  varying	  from	  0.1nm	  (large	  dashed	  line)	  upto	  100nm	  (solid	  line)	  for	  different	  

values	  of	  kI	  (shown	  here	  as	  kcross-‐plane)	  reproduced	  from	  Yu	  et.	  al.	  [53]	  
 
As an illustration of the rectangular nanowire cross-section, let us consider measurement 
of the thermal conductivity of Vanadium Dioxide (VO2) beams, which have a rectangular 
cross-section, the results are shared in Chapter 4 of this thesis.  The expected thermal 
conductivity of VO2 is ~4-6 W/m-K in the insulating phase at 300K [60–62].  The typical 
cross-section of the beams is rectangular with the width, w and height, h around 500nm to 
1.5µm. Using an average cross-sectional area based on these dimensions, and 
approximating k = 5 W/m-K for the VO2 beam, we expect the beam conductance to be 
58.6 nW/K.  The actual measured conductance is 56 nW/K, which is agreeably close to 
the expected value.  For other geometries of nanowires measured in this study, the range 
of measured thermal conductances is between 50 to 200 nW/K.  This translates to the 
measured thermal resistance, Rth = 1/G between the two pads of between 5 and 20 K/µW.  

Again, considering kI and LI as the two important length scales for the contact, and 
considering a range of values in Equation 2.5, Fig 2.7 shows the values of the thermal 
contact resistance (Rc) for different values of the unknown parameters: 

We have calculated the contact resistance using an approach
based in part on a recent work by Bahadur et al. !16", who have
extended McGee et al.’s model !17" of the thermal resistance of
cylinder-flat contacts to analyze the constriction thermal resistance
#Rc!$ of unit contact length between a nanowire and a flat surface.
The contact width #2b$ between the cylinder and the surface can
be calculated from the contact force.

Bahadur et al. calculated the contact force between a nanowire
and a substrate to be the van der Waals force. The calculation
requires the knowledge of the Hamaker constant #A$ that can be
calculated from Lifshitz-van der Waals coefficient !18". For the
contact between Pt and carbon #C$ in vacuum, the Hamaker con-
stant can be estimated from those of Pt–Pt and C–C interfaces to
be APt–C%&APt–PtAC–C !18,19". We could not find the Hamaker
constant for Pt–Pt and graphite-graphite interfaces in the litera-
ture, and have used the values for Au-Au and diamond-diamond
interfaces to approximate APt–Pt and AC–C and obtained APt–C%4
!10−19 J for the contact between the nanofiber and the mem-
brane. In the calculation, we have used Van der Waals radii for Pt
and carbon found in Ref. !20". Based on these alternative
properties, we calculated that the contact width #2b$ between the
152-nm-diameter nanofiber and the Pt surface was approximately
10 nm.

Because the temperature of the nanofiber segment in contact
with the membrane varies along the nanofiber as a result of heat
transfer to the membrane, the portion of the nanofiber in contact
with the membrane should be treated as a fin. The thermal contact
resistance between the nanofiber and the sensing membrane is
thus the fin resistance. Assuming adiabatic boundary condition at

the end of the nanofiber fin, the total thermal contact resistance of
the two contacts between the nanofiber and the two membranes
can be calculated as !2"

Rc =
2

&k'"D2

4Rc!
tanh(l& 4

k'"D2Rc!
) #7$

where k' is the axial thermal conductivity of the nanofiber, and lc
is the contact length in the axial direction. The radial or cross-
plane thermal conductivity of the nanofiber, i.e., k!, is needed for
the calculation of Rc!. Although the cross-plane thermal conduc-
tivity of graphite is given in the literature to be k!=5.7 W/m-K at
300 K !2", the value for the nanofiber can be different because of
different crystalline structure and quality. More importantly, the
effective thermal conductivity at a point contact of a Knudsen
number #K$ of the order of unity or larger, where K is the ratio
between the phonon mean free path and the contact width, can be
substantially reduced !21". This reduction needs to be taken into
account in the calculation of the contact resistance based on the
continuum model when the contact width is comparable to or
smaller than the mean free path. On the other hand, the axial or
in-plane thermal conductivity k' can be calculated from the mea-
sured thermal resistance of the nanofiber after the Pt coating. Us-
ing the obtained k' values at 150 K and 300 K, we have calculated
the contact thermal resistance as a function of k! for different
contact widths of 2b=0.1 nm, 1 nm, 10 nm, 50 nm, and 100 nm.
The results are shown in Fig. 7.

Without the Pt coating, a contact width of 2b=50 and 100 nm
is rather unlikely because the diameter of the nanofiber is only
152 nm. With the Pt coating, on the other hand, a contact width of
2b#50 nm is possible. If 2b#50 nm with the Pt coating and
2b%10 nm without the Pt coating, the calculated $Rc can match
the measurement value when k!%0.6 W/m-K for 150 K and
k!%2 W/m-K for 300 K. For this case, the residual Rc after the
Pt coating is comparable to the measure $Rc shown in the inset of
Fig. 6.

We have used the thermal resistance results measured after the
Pt coating to calculate the axial thermal conductivity of the
nanofiber. The results are shown in Fig. 8. As a comparison, Fig.
8 also shows the measured thermal conductivity of a graphite fiber
grown by pyrolysis prior to heat treatment. The thermal conduc-
tivity of the PECVD nanofiber increases nearly linearly with the
temperature in the temperature range between 150 K and 310 K
and the value at 300 K is about three times smaller than that of the
graphite fiber. Note that the thermal conductivity of the graphite
fiber and the specific heat #C$ of graphite !22" increase nearly
linearly with temperature in the temperature range between 150 K
and 310 K. Using the specific heat of graphite and a sound veloc-
ity of v=10000 m/s, we have calculated the phonon mean free
path #l$ according to the thermal conductivity formula, i.e., k

Fig. 5 SEM images of the two contacts between the nanofiber
and the two membranes after a thin Pt layer was deposited on
the contacts. The scale bars in the two images are 500 nm.

Fig. 6 Measured thermal resistance of the nanofiber sample
before a Pt layer was deposited „solid black circles… and after a
Pt layer was deposited with the use of the electron beam „open
circles…. The inset shows the reduction in contact resistance,
!Rc, after the Pt coating.

Fig. 7 Calculation results of thermal contact resistance „Rc… at
150 K and 300 K as a function of the cross-plane thermal con-
ductivity „k! or kcross-plane… of the nanofiber. The five lines in
each figure correspond to a contact width of 2b=0.1 nm „long
dashed line…, 2b=1 nm „dotted line…, 2b=10 nm „short dashed
line…, 2b=50 nm „double dotted line…, and 2b=100 nm „solid
line….
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Figure	  2.7	  (a)	  The	  thermal	  contact	  resistance,	  Rc	  as	  a	  function	  of	  the	  interface	  thermal	  
conductivity,	  kI	  approximating	  the	  contact	  area	  as	  a	  fin	  with	  adiabatic	  ends	  and	  a	  contact	  
length	  of	  1µm.	  	  The	  maximum	  Rc	  ~0.75	  K/µW	  is	  when	  kI	  =	  0.01	  W/m-‐K.	  For	  this	  graph,	  LI	  =	  

10	  nm,	  w	  =	  500	  nm	  and	  h	  =	  500	  nm.	  (b)	  Predicted	  thermal	  contact	  resistance,	  Rc	  as	  a	  
function	  of	  expected	  values	  of	  the	  interface	  length,	  LI	  ranging	  from	  1	  to	  100	  nm	  where	  kI	  =	  
0.1	  W/m-‐K,	  w	  =	  500	  nm	  and	  h	  =	  500nm.	  (c)	  Predicted	  thermal	  contact	  resistance,	  Rc	  as	  a	  
function	  of	  beam	  widths	  and	  heights	  ranging	  from	  500	  nm	  to	  1.5	  µm	  when	  kI	  =	  0.1	  W/m-‐K	  

and	  LI	  =	  10	  nm.	  
 

For the circular nanowire cross-section, as seen in Fig 2.6 the maximum value of the 
contact resistance is given by Rc < 15 K/µW, while realistically, we can expect kI ~ 1 
W/m-K, resulting in Rc ~ 5 K/µW, which was shown to be about 10% of the measured 
thermal resistance. 

On the other hand, in Fig. 2.7(a) for the rectangular cross-section, we have plotted Rc as a 
function of different kI ranging from 0.01 W/m-K to 10 W/m-K.  As can be seen from this 
figure, Rc is expected to be < 0.75 K/µW for a large area of contact, which is at most 15% 
of our measured resistance.    Note that we have used a beam width and height of 500 nm 
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and LI = 10 nm.  Fig. 2.7(b) shows the effect that the interface length, LI has on Rc.  Even 
in the extreme case of LI = 100 nm, assuming kI = 0.1 W/m-K, we only get Rc ~ 0.75 
K/µW.  Finally, as expected, the contact resistance decreases as we increase the beam 
width upto 1.5 µm, as the area of contact increases as illustrated in Fig. 2.7(c). Here, we 
assume kI = 0.1 W/m-K and LI = 10 nm. 

Another way of estimating the contact resistance is by considering the thermal interface 
resistance reported in literature for highly dissimilar materials.  Even in this limit, the 
smallest thermal interface conductance between two solids is given by Gc’ ~ 10 MW/m2-
K [63].  Considering this value for the contact area in our rectangular beam system given 
by w = 500 nm, Lc = 1 µm, we obtain  

Rc = 2 ⋅
1

Gc 'A
<

2
10MW m−2  K −1 ⋅500nm ⋅1µm( )

= 0.4K µW  

which is at most 8% of our measured thermal resistance. 

In summary, by approximating the contact area between the nanowire and the electrodes 
on the membranes as fins, we can expect that the thermal contact resistance is only about 
10% of the measured thermal resistance. 

 

2.2.3 Experimentally determining thermal contact resistance in Silicon 
Nanowires 

Theoretical estimation of the contact resistance as done in the previous section suffers 
from many inadequacies.  In particular, the thermal interface resistance between the 
nanowire and the membranes is unknown. Experimentally, the contact resistance can be 
determined by plotting the measured thermal resistance as a function of different lengths 
of the nanowires.  Of course, since the thermal conductivity is diameter-dependent, the 
measurement was done with nanowires of the same diameter. Results of this 
measurement are shown below: 
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Figure	  2.8	  Thermal	  resistance	  of	  VLS	  Si	  nanowires	  with	  various	  lengths	  and	  diameters.	  The	  
intercept	  on	  Y	  axis	  indicates	  the	  average	  contact	  resistance	  ~	  4.5	  K/µW,	  which	  is	  less	  than	  
10%	  of	  VLS	  nanowires	  with	  71.3	  nm	  diameter	  and	  5	  µm	  length.	  Reproduced	  from	  J.	  Lim	  et.	  

al.	  [64]	  
 
Here, we have plotted the measured overall thermal resistance as a function of the 
distance between the two membranes.  The residual thermal resistance at zero length 
gives us the thermal contact resistance.  The slope is linear since transport through the 
nanowires is diffusive.  The slopes are different since the thermal conductivity of 
different diameter nanowires is different.  Interestingly, as is seen in Fig 2.8, the residual 
resistance is not diameter-dependent. This is expected, as the area enhancement from the 
Pt/C composite envelope will dominate the reduction in the residual resistance.  Hence, 
once the Focused Electron Beam Induced Deposition (FEBID) is performed on the 
nanowires whose thermal conductivity needs to be ascertained, the residual thermal 
contact resistance in these samples is ~4.5 K/µW.  In principle, if the geometry of the 
nanowires can be controlled, thermal devices with different gaps (lengths between 
membranes) can be used to perform a length series and the y-asymptote of the linear 
curve gives the contact resistance. Since we perform the same operation on all our 
nanowires, for the rest of our studies, we’ve used this number as a reference for the 
thermal contact resistance. 
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2.2.4 Eliminating thermal contact resistance with integrated nanowires 

 
In order to experimentally probe the phonon transport in SiNWs in a systematic manner, 
it is necessary to measure the thermal conductivity of samples with precisely controlled 
dimensions.  Several groups, including ours, have experimentally investigated phonon 
transport in nanowires [16], [35], [36], [65].   Generally, a single nanowire is placed on 
the micro-fabricated thermal measurement device by either drop-casting or 
micromanipulation. There is limited control over how the nanowire is positioned and 
which nanowire from a solution bridges the measurement device. Thus, it is challenging 
to systematically measure nanowires with desired dimensions. Furthermore, the 
nanowires are anchored on the measurement device using the FEBID as described in the 
previous section, which inevitably introduces an unknown thermal contact resistance. 
Although it has been shown that the thermal contact resistance has minor effects [51–53], 

it can vary from sample-to-sample and is hard to control. Our new approach reduces 
these uncertainties and allows us to better understand phonon transport in low-
dimensional structures.  

We designed and fabricated suspended micro-devices with integrated SiNWs with 
rectangular cross sections for direct thermal transport measurement. This design 
eliminates contact resistance and the fabrication, which is based on high-resolution 
electron beam lithography (EBL), offers precise control of key variables such as the 
thickness, width and length of SiNWs. The thermal transport in the SiNWs was 
systematically investigated using these novel micro-devices. The reported design and 
fabrication process can be extended for the investigation of thermal transport in a wide 
range of materials and structures, including grids, ribbons and thin films.  

A scanning electron micrograph (SEM) of a micro-device is shown in Figure 2.9. The 
suspended device consists of two 25×40 µm pads that are suspended by six 2-µm-wide, 
0.3-µm-thick and 450-µm-long low-stress silicon nitride (LSN) beams. The pads contain 
two layers; the top layer is a 0.3-µm-thick LSN membrane and the bottom layer is a 
single-crystalline silicon membrane with variable thickness. One or more single 
crystalline silicon nanowires with the same thickness as the silicon membranes have 
monolithic contact with the two pads. A 30-nm-thick, 1-µm-wide platinum resistance 
coil, which can work as a heater and a thermometer, is on top of each LSN membrane. 
The platinum resistance coils are connected to 200×200 µm platinum bonding pads on 
the substrate via four 200-nm-thick and 2-µm-wide platinum leads deposited on the long 
silicon nitride beams. Two of the leads supply electrical current to the coil, and the other 
two are used to measure the voltage drop across the coil. Two 60-nm-thick and 2-µm-
wide platinum electrodes are on the exposed top surface of the silicon membrane to 
provide electrical contacts for the SiNWs. 
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Figure	  2.9	  SEM	  image	  of	  the	  suspended	  microdevice	  with	  integrated	  SiNWs.	  

 
The device is batch fabricated using a single silicon-on-insulator (SOI) wafer and 

micro-fabrication technology. The fabrication process is shown in Figure 2.10. The 
device layer of a 4-inch SOI wafer (340 nm Si/ 400 nm buffered SiO2/ 500 µm Si) is 
thermally oxidized with careful control over final thickness. The resulting silicon oxide 
layer is etched using a 10:1 buffered HF solution (10-100 nm) (Figure 2.10(a)). The 
thickness of the device layer at several spots was initially measured using a small spot 
spectroscopic reflectometer. A 60-nm-thick layer of PMMA (polym(methyl 
methacrylate), a positive photoresist) is then spun on the silicon surface. The SiNWs are 
patterned onto the PMMA layer by electron beam lithography (EBL) (Figure 2.10(b)) and 
a 20-nm thick film of Cr is thermally evaporated.  A PMMA liftoff process is used to 
define the SiNWs. The Si pads that connect to SiNWs are defined by photolithography 
and 20-nm-thick Cr deposition (Figure 2.10(c)). Using the Cr pattern as a mask, the 
unprotected Si layer is etched away by reactive ion etching (RIE), and a Cr-7 solution is 
used to remove the Cr (Figure 2.10(d)).  The thicknesses of the SiNWs are then measured 
by a surface profiler. The results of the surface profiler measurement are in good 
agreement with thickness measurements performed using spectroscopic reflectometer. To 
protect the SiNWs, a 300 nm thick low-temperature oxide (LTO) film is deposited by 
low-pressure chemical vapor deposition (LPCVD). A small window covering the SiNWs 
are defined by photolithography, and a 10:1 buffered HF solution is used to remove the 
exposed LTO layer. The small LTO window serves as a buffer layer during the 
subsequent silicon nitride etching and is removed in the final release step. A 200 nm-
thick low stress silicon nitride (LSN) is then deposited on the substrate using LPCVD at 
700 K (Figure 2.10(e)). The platinum coil, leads and electrodes are defined by 
photolithography. A 10-nm-thick Cr layer and then a 200 nm-thick platinum layer are 
deposited in sequence on the top of the photoresist using direct current (DC) and radio-
frequency (RF) sputtering, respectively. Acetone is used to remove the photoresist in a 
liftoff process, which transfers the photoresist pattern to the Cr/ Pt layer. Reactive ion 
etching (RIE) is used to etch the Pt layer to increase the resistance of the Pt heater coils 
(Figure 2.10(f)). A 1-µm-thick I-line photoresist is spun on the substrate, patterned with 
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photolithography and hard-baked. The exposed portions of the nitride film is etched away 
by nitride RIE, and the wafer is immersed in acetone to remove the photoresist (Figure 
2.10(g)). Photolithography and 10:1 buffered HF wet etching are used to open small 
windows on the exposed LTO layer. This shortens the subsequent oxide etching time and 
avoids the damage to SiNWs. To release the device, the thick silicon substrate below the 
device is removed from the backside. 8-10 µm thick I-line photoresist is spun on the 
backside of the wafer, and backside alignment and photolithography are used to open 
windows on the backside of the wafer that correspond to the patterned devices on the SOI 
device layer. The wafer is then attached to a 6 inch dummy wafer coated with 8-um-thick 
I-line photoresist. The wafers are baked together at 120 ℃ for 3 hours and deep silicon 
etching is performed on the backside of the wafer to etch the silicon under the opened 
backside windows until the buffered oxide layer of the SOI wafer is exposed (Figure 
2.10(h)). After immersing the wafer into acetone for 12 hours to remove the thick 
photoresist layer, critical point drying (CPD) is used to dry the wafer to avoid the 
possible damage to the SiNWs caused by surface tension (not shown). The dried wafer is 
then cut into small chips (8 x 8 mm). HF vapor etching at 50℃ is performed from the 
front side to etch both the protective LTO on the top of the SiNWs and the exposed 
buffer oxide layer beneath the devices. The HF vapor etching releases the SiNWs so that 
the entire structure is suspended (Figure 2.10(k)). The released SiNWs are inspected 
using optical and scanning electron microscopy (SEM) to ensure that the wires are clean 
and intact. SEM is also used to determine the width and the length of individual SiNWs. 
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Figure	  2.10	  Fabrication	  sequence	  for	  the	  microdevices	  with	  integrated	  SiNWs:	  (a)	  thermal	  
oxidization	  and	  HF	  wet	  etching	  to	  thin	  the	  SOI	  device	  layer,	  (b)	  SiNWs	  patterning	  by	  EBL	  
and	  Cr	  deposition,	  (c)	  Si	  pads	  patterning	  by	  photolithography,	  (d)	  RIE	  of	  Si	  to	  define	  SiNWs	  
and	  Si	  pads.	  (e)	  Patterning	  of	  protective	  LTO	  windows	  and	  LSN	  Deposition,	  (f)	  Patterning	  of	  
heater	  coils	  and	  beams	  by	  photolithography	  and	  Cr/Pt	  deposition.	  (g)	  RIE	  for	  LSN.	  (h)	  

Backside	  alignment	  and	  deep	  silicon	  etching,	  (k)	  Release	  of	  final	  suspended	  structure	  by	  HF	  
vapor	  etching.	  

 
Up to ~2000 suspended devices with SiNWs of varying widths and lengths can be 

fabricated on a 4-inch SOI wafer using the fabrication method described above. There is 
some non-uniformity in the thickness and width of SiNWs across the entire wafer due 
process variation. For the small chips, which are 8 x 8 mm and consist of 64 devices, the 
non-uniformity is less than 5%. The thicknesses, widths and lengths of the fabricated 
SiNWs are controllable, e.g., deviation in width from the design is less than 20% for 50 
nm-wide wires. Figure 2.11 shows that SiNWs with thickness of 20-100 nm, width of 40-
150 nm and length of 4-100 µm have been fabricated. SiNWs with an extremely high 
aspect (length/width or thickness > 1000) have been attained (refer to Figure 2.11(d)), 
which is difficult to achieve by traditional nanowire measurement techniques.  Figure 
2.11(b) illustrates that the technique can also be used to fabricate suspended structure 
with an integrated thin silicon ribbon or film.   
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Figure	  2.11	  SEM	  images	  of	  (a)	  60-‐nm-‐wide,	  40-‐nm-‐thick	  and	  13-‐µm-‐long	  SiNW,	  (b)	  3-‐µm-‐
wide,	  30-‐nm-‐thick	  and	  22-‐µm-‐long	  Si	  ribbon,	  (c)	  five	  40-‐nm-‐wide,	  30-‐nm-‐thick	  and	  5-‐µm-‐
long	  SiNWs	  (Note	  that	  there	  is	  some	  residual	  oxide	  on	  the	  3	  wires	  in	  the	  center),	  (d)	  three	  

100-‐nm-‐wide,	  40-‐nm-‐thick	  and	  107-‐µm-‐long	  SiNWs.	  
 

Figure 2.12 shows the TEM pictures of the fabricated SiNWs. The fabricated SiNWs 
still remain single crystalline structure and no defects such as pores or constrictions have 
been detected on the wires. 

 
Figure	  2.12	  TEM	  image	  of	  an	  EBL	  Si	  nanowire	  (a)	  Multiple	  Bright	  Field	  TEM	  pictures	  taken	  

along	  the	  length	  of	  the	  wire	  have	  been	  put	  together	  as	  a	  series	  to	  view	  the	  surface	  
morphology	  of	  the	  whole	  wire.	  	  A	  typical	  low	  resolution	  TEM	  picture	  more	  clearly	  shows	  the	  
surface	  profile.	  	  The	  defect	  areas	  were	  formed	  as	  a	  result	  of	  performing	  Convergent	  Beam	  
Electron	  Diffraction	  (CBED)	  at	  300kV.	  (b)	  Multiple	  Selected	  Area	  Electron	  Diffraction	  

(SAED)	  images	  taken	  along	  different	  points	  on	  the	  wire	  show	  the	  same	  single-‐crystalline	  
orientation.	  	  The	  representative	  SAED	  image	  shown	  here	  is	  the	  zone	  axis	  orientation,	  the	  

axial	  crystalline	  direction	  was	  not	  determined.	  
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Fabricated wires with identical cross-sections and different lengths were measured at 
room temperature (300K) to determine the contact resistance between the SiNWs and the 
measurement device.  Two batches of SiNWs with different cross-sections were 
analyzed.  The nanowires in batch 1 have widths of 100 +/- 5 nm and approximate device 
layer thicknesses of 20 nm. Because the thicknesses of the nanowires in batch 1 were not 
measured with a surface profiler before release, the samples were not used for thermal 
conductivity measurements. Instead, the thickness was determined by measuring the SOI 
device layer thickness before EBL pattering at several sites on the wafer using a small 
spot spectroscopic reflectometer. The nanowires in batch 2 have widths of 120 +/- 5 nm 
and device layer thicknesses of 40 +/- 1 nm. The device layer thickness for the second 
batch of SiNWs was measured using a surface profiler with ±1 nm uncertainty. Within 
each batch, the nanowires are expected to have a similar thickness (batch 1 < 10 % 
deviation; batch 2 < 5% deviation). The widths of all the SiNWs were measured using a 
SEM.  

In the diffusive regime of phonon transport where the thermal conductivity is 
independent of nanowire length, the conductance, 

€ 

GW = kA L , is expected to scale 
inversely with the nanowire length, L.  Figure 2.13 shows the measured wire thermal 
resistance RW  (RW = 1/GW) as a function of nanowire length for batches 1 and 2.  A linear 
fit through the data points shows that the residual conductance at L = 0 µm is negligible, 
indicating that the monolithic contact within the device layer eliminates the contact 
resistance between the nanowires and the measurement device. This is an ideal scenario 
for accurate measurement of thermal conductivity and controlled investigation of 
fundamental phonon transport of quasi one-dimensional nanowires. Comparing this with 
the nanowire results for silicon nanowires shown in Figure 2.8, with residual thermal 
contact resistance of ~4.5 K/µW, shows the significant improvement we’ve achieved in 
eliminating contact resistance completely. 
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Figure	  2.13	  Plot	  of	  the	  thermal	  Resistance	  (K/nW)	  as	  a	  function	  of	  nanowire	  length	  (3µm	  up	  
to	  50	  µm)	  for	  Batch	  1	  (circles)	  and	  Batch	  2	  (triangles).	  	  The	  linear	  fit	  passes	  very	  close	  to	  the	  

origin	  indicating	  nearly	  zero	  contact	  resistance.	  Error	  bars	  are	  included	  for	  all	  points.	  
 

2.3 NOISE EQUIVALENT THERMAL CONDUCTANCE 
 

From Section 2.2, it is obvious that the contact problem can be solved simply by making 
the suspended part of the nanowire as long as experimentally possible.  This is of course 
difficult since designing and making quasi-1D materials with very large aspect ratios can 
be challenging.  On the measurement side, there is a limit to the length of the samples 
that stems from the sensitivity of the measurement scheme.  We have used the 
measurement scheme well described in Li Shi et. al. and by Deyu Li [52], [55] and have 
no further modifications to this scheme.  However an understanding of the lowest 
measurable thermal conductance is necessary to get an idea about the limits of the 
system.  
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Following Prof. Deyu Li’s analysis of the noise floor of the measurement, the noise 
equivalent conductance (NEG) can be defined as: 

 
NEG =Gb

NET
ΔTh −ΔTs

  
(2.6) 

 

where NET is the noise equivalent thermal change that can be accurately estimated from 
the change in resistance of the Platinum Resistance Thermometer (PRT). Now, this is 
given by: 
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(2.7) 

 

where NERs is the noise equivalent sensing resistance (in other words what is the 
smallest change in the sensing resistance as a function of temperature change that can be 
measured by the electronics). TCR is the Temperature Coefficient of Resistivity, which is 
a material property for a thin film of Platinum.  Therefore, the dominant noise source is 
the AC current supplied by the lockin amplifier on the sensing side.  Deyu Li [55] 

showed that NERs Rs
≈ 5×10−5 for Johnson noise limited voltage measurement using a 

precision 1MΩ resistor, and we verify this same electrical noise floor in our measurement 
at a bandwidth, Δf=0.3Hz. For a Platinum thin film of ~50 nm, TCR at 300K is  
~1.5x10-3 K-1 and ~3.0x10-3 K-1 at 100K.  Using this number, the noise equivalent 
temperature is then ~33 mK at 300 K and ~17 mK at 100K. This noise from the AC 
resistance measurement of the PRT on the sensing side is similar to the temperature 
oscillations of the cryostat, which is ~30 mK at 300K and ~10 mK at 100K. 

In our micro-fabricated structures, the beam conductance, Gb is about 60-100 nW/K and 
the largest temperature excursion across the nanowire is given by: ΔTh −ΔTs( ) ~ 5K . We 
can obtain an estimate for the NEG based on Equation 2.6. At 300K, NEG ~ 400 pW/K, 
hence, our platform is a nano-watt resolution calorimeter (~2 nW). Below 100K, this 
improves by a factor of two, giving a NEG ~ 200 pW/K, such that we can perform 
calorimetry with ~1 nW resolution. 

It is worth noting that significant progress has been made in recent years in the sensitivity 
of resistance based thermometry.  In 2011, Wingert et. al. [66] employed a Wheatstone 
Bridge circuit with another resistor, !Rs  inside the cryostat next to the sensing membrane 
resistor, Rs , forming a pair. The first advantage gained was that the temperature 
fluctuations in the cryostat were cancelled out as they were seen equally by the paired 
resistors. Secondly, the non-linear bridge circuit improved the accuracy of the resistance 
measurement, improving NERs significantly.  Wingert et. al. were able to measure NETs 
~1 mK at room temperature, which is ~30 times improvement compared to the traditional 
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setup, as shown in Fig 2.14 below.  Using Equation 2.6, they were thus able to obtain a 
noise equivalent thermal conductance, NEGs of ~10 pW/K, which is about 40 times better 
than the current setup. 

 

Figure	  2.14	  Measured	  ΔTs	  and	  ΔTh	  as	  a	  function	  of	  heating	  power.	  NETs	  ∼1 mK,	  leading	  to	  
NEGs	  ∼10 pW/K.	  Adapted	  from	  Wingert	  et.	  al.	  [66]	  

	  
Sadat et. al. improved the temperature resolution of the suspended platform further by 
incorporating a bi-material cantilever sensor that has a sensitivity of ~4 µK in vacuum 
[67] as seen below in Fig 2.15. With beam conductance, Gb of ~600 nW/K, they could 
perform calorimetry down to the level of ~4 pW, which is a subsequent improvement of a 
factor of 2 compared to Wingert et. al. [66] albeit with an additional geometry due to the 
suspended cantilever.  

 

Figure	  2.15	  Bi-‐material	  Cantilever	  based	  calorimeter	  with	  ~4pW	  resolution	  with	  NETs	  
~4µK.	  Adapted	  from	  Sadat	  et.	  al.	  [67]	  

	  
Sadat et. al. [68] also used AC heating coupled with AC sensing to improve the 
temperature resolution purely for patterned PRTs upto ~30 µK, which was then 
incorporated into the bridge design pioneered by Wingert et. al. to achieve a NEGs of  
5 pW/K [69].  These improvements in the measurement scheme can potentially be used 
to measure the thermal conductance of DNA, single polymer chains and other dielectric 
nanotubes with extremely small dimensions.  

 

Figure 3A shows the measured îTh and îTs using the new
bridge setup. The figure shows that the setup is able to measure

îTs with a sensitivity of <1 mK, which indicates a
measurement sensitivity of the conductance (Gmin) of about
10 pW/K according to eq 1. The sensitivity achieved by the
bridge setup is about 2 orders of magnitude lower than that of
the four-point probe method using similar suspended micro-
devices.12,13,27

Figure 3B shows the measured G of a <20 nm diameter Ge✓
Si NW. Thermal conductance of the NW (GNW) was obtained
as the difference between the conductance of the NW device
(GNW+B) and the background conductance (GB) of the same
device after the NW was cut using a focused ion beam (FIB).
Note that the thermal contact resistance between the small
diameter NWs and the substrate is negligible because of the
extremely large conduction thermal resistance of NWs (see the
Supporting Information), so the measured GNW can be
interpreted as the intrinsic thermal conductance of the NWs.
The insets in Figure 3B show the SEM images of the same
device, before and after the NW was cut, respectively. Note that
the background conductance GB is not negligible compared to
that of GNW and needs to be carefully measured for NWs with
conductance less than 1 nW/K. This background conductance
is likely due to near field thermal radiation energy exchange
between the two membranes whose gaps (<2✓5 ºm) are
comparable to the dominant photon wavelength (<10 ºm at
300 K) as well as conduction by residual gas molecules. We also
noticed that GB varies quite significantly among devices,
ranging from 0.15 to 0.4 nW/K, presumably due to the
variations in the distance and view factor between the two
membranes of each device. Therefore, it is necessary to
measure the background conductance of each individual sample
to extract the intrinsic NW conductance.

We have measured NWs of pristine Ge and Ge✓Si core✓
shell structures with outer diameters between 15 and 20 nm
within the temperature range of 108 to 388 K (178✓382 K for
Ge NW no. 2), as shown in Figure 4. To elucidate the size

effect and to ensure that the thermal contact resistance between
the NWs and the devices is negligibly small (<5%, see the
Supporting Information for the discussion on thermal contact
resistance), we have also measured ∫ of large diameter Ge NWs
(d < 60✓120 nm), and the data of a representative NW (d <
62 ± 2 nm, L <10 ºm) is shown in Figure 5A. The diameter of
each sample was measured by a combination of SEM and AFM
and typically has an uncertainty of 1✓2 nm. The range of the
diameters for each NW sample is also shown in the legend of
Figure 4. This uncertainty in diameter causes a fairly large
uncertainty in thermal conductivity because of the small NW
diameters. The error bars shown in the figure are a combination
of the uncertainty due to the diameter determination and the
standard deviations of multiple measured data points at a given
temperature (typically 3✓5 points), but the latter typically leads
to less than 5% uncertainty because of the highly sensitive
bridge circuit employed in these measurements. Only the
representative error bars at 382 or 388 K, 300 and 108 K
respectively (178 K for Ge NW no. 2) are shown for better
clarity of the figure; however, the uncertainties in ∫ are similar
at other temperatures. As shown in Figure 4, at 300 K, ∫ for the
15 and 19 nm Ge NWs are (1.54 + 0.59/✓0.30) and (2.26 +
0.60/✓0.39) W/m·K, respectively, which are significantly lower
than that of bulk Ge (<58 W/m·K at 300 K). The measured ∫
are also lower than those of Si NWs with similar diameters (∫ <
7✓10 W/m·K for 18✓22 nm Si NWs12,13), which is a result of
the larger atomic mass and lower speed of sound of Ge. Within
the entire temperature range of 108✓382 K, ∫ of the Ge NWs
increase monotonically with temperature and are about 2.8 +
1.0/✓0.6 W/m·K at 382 K. The monotonic temperature
dependence was also observed by Li et al. on a 22 nm Si NW13

and cannot be explained by the diffusive boundary scattering
based BTE model.38 A frequency dependent phonon boundary

Figure 3. (A) Measured temperature rise on the heating and sensing
sides as a function of the heating power. The bridge method has a Ts
sensitivity of <1 mK, leading to a G sensitivity of <10 pW/K (eq 2).
(B) G of the device with a <19 nm diameter Ge✓Si NW (GNW+B, blue
circles) and without the NW (GB, black triangles) to extract the
intrinsic G of the NW (GNW, red square). The insets in (B) show the
SEM images of the same device before and after the NW was cut.

Figure 4. Measured thermal conductivity of pristine Ge NWs (green
and blue triangles) and Ge✓Si core-shell NWs (red and black circles)
with diameters ranging from 15✓20 nm. The error bars shown are
representative errors at 388 or 383 K, 300 and 108 K respectively (178
K for Ge NW no. 2). The primary error source comes from the
uncertainty in the diameter determination, as the NWs are very thin
and are not perfectly uniform. At 300 K, ∫ for the 15 and 19 nm Ge
NWs are (1.54 + 0.59/✓0.30) and (2.26 + 0.60/✓0.39) W/m·K,
respectively, while ∫ of the core✓shell NWs are in the range of 1.1✓2.6
W/m-K and show little temperature dependence within the entire
measured temperature range. ∫ of both Ge and Ge✓Si core shell NWs
is significantly lower than that of bulk SiGe alloy as well as smooth Si
NWs with similar diameters12,13
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Room temperature picowatt-resolution calorimetry
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Picowatt-resolution calorimetry is necessary for fundamental studies of nanoscale energy transport.
Here, we report a microfabricated device capable of <4 pW resolution—an order of magnitude
improvement over state-of-the-art room temperature calorimeters. This is achieved by the
incorporation of two important features. First, the active area of the device is thermally isolated by
thin and long beams with a total thermal conductance (G) of !600 nW/K. Further, a bimaterial
cantilever thermometer capable of a temperature resolution (DTres) of !4 lK is integrated into the
microdevice. The small thermal conductance and excellent temperature resolution enable
measurements of heat currents (q¼G#DTres) with a resolution <4 pW. VC 2011 American
Institute of Physics. [doi:10.1063/1.3617473]

Understanding thermal transport at the nanoscale is
essential for the development of energy conversion technolo-
gies. Towards this challenging goal, several researchers have
made critical progress in developing nanoscale thermal mea-
surement techniques,1–3 including the development of sus-
pended microdevice structures1 that have enabled !1
nanowatt (nW) power resolution measurements at room tem-
perature. This technical advance has been applied to a variety
of nanoscale phonon transport studies.1,4 Moreover, a bimate-
rial cantilever-based calorimeter3 with a reported resolution2

of !40 picowatt (pW) has been used recently in the analysis
of nanoscale photon5 and phonon6 transport mechanisms. In
spite of this important progress, several nanoscale thermal
transport phenomena have not been characterized. For exam-
ple, the effect of surface chemistry on the near field radiative
transport properties and heat transport properties of atomic
scale point contacts and molecular junctions are of great inter-
est to researchers, but remain largely unexplored.

Elucidation of many of these nanoscale heat transport
phenomena requires measurement techniques with single-digit
picowatt-resolution. To overcome this challenging technical
barrier, we present a technique that can measure, at room tem-
perature, heat currents as small as 4 pW and detect changes in
heat flow with a resolution smaller than 4 pW—at least an
order of magnitude improvement over previously reported
state-of-the-art calorimeters.2 The basic strategy employed in
this work for achieving picowatt-resolution calorimetry is to
microfabricate a thermally isolated device from which very
precise temperature measurements can be made. The calorim-
eter (Fig. 1) consists of a thin low stress silicon nitride (SiNx)
membrane that is suspended by thin and long SiNx beams
which have a combined thermal conductance (G) of !600
nW/K and serve to thermally isolate the suspended membrane.
Further, a bimaterial cantilever (BMC) that can detect periodic
temperature variations with a resolution (DTres) of !4 lK and
a noise floor of !6.4 lK is integrated into the suspended
membrane. When this suspended device is operated in a high

vacuum environment (<10$6 Torr), thermal conduction via
the gas molecules and heat transport by radiation are negligi-
ble, ensuring that the total thermal conductance between the
suspended region and the environment is !600 nW/K. The
low thermal conductance of the beams and the excellent tem-
perature resolution of the bimaterial cantilever enable single-
digit picowatt resolution.

A schematic of the picowatt calorimeter along with a
scanning electron micrograph of a fabricated device is shown
in Figure 1. The active region of the device is a SiNx mem-
brane with a thickness of !0.5 lm. The membrane is sus-
pended by four SiNx beams, each of which is 50 lm long, 2
lm wide, and 0.5 lm thick. A serpentine gold (Au) line,
which is 600 nm wide and 30 nm thick, is integrated into the
membrane and serves as both a heater and a thermometer.
Further, a bimaterial cantilever made from SiNx and Au hav-
ing a length of !200 lm and a width of !40 lm is also
incorporated into the suspended region. Following previous
studies, where bimaterial cantilever sensor sensitivity was
optimized, we chose the thickness of Au and SiNx layers to
be !125 and !500 nm, respectively.8

To evaluate the performance of the picowatt calorimeter
described here, we present a theoretical estimate of the

FIG. 1. (Color online) Schematic of a picowatt calorimeter is shown along
with a scanning electron micrograph of a microfabricated device (inset). The
central area of the device is suspended by thin (!2 lm) and long (!50 lm)
beams. A serpentine line that serves as a 4-probe heater/thermometer and a
200 lm long bimaterial cantilever that acts as an ultra-sensitive thermometer
are integrated into the suspended region.

a)Authors to whom correspondence should be addressed. Electronic
addresses: meyhofer@umich.edu and pramodr@umich.edu.
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2.4 MEASUREMENT PRACTICE 
 
In order to minimize the effect of thermal contact resistance and ensure accurate 
measurement of thermal conductivity of single nanowires the measurements have to be 
iterative.  The two limits of the measurement stem from: 

(1) Contact resistance when the suspended section of the nanowire is short. For 
illustrative purposes, we’ll use the value of 5 K/µW as the contact resistance for circular 
cross-section nanowires (with line contact and Pt/C FEB).  Similarly, thermal contact 
resistance for a rectangular beam has an upper limit of ~1 K/µW.  Hence, for 10% 
contribution from contact resistance, the measured thermal resistance of the system 
(including the contacts) needs to be higher than 50 K/µW (20 nW/K) for a nanowire with 
circular cross-section and 10 K/µW (100 nW/K) for a rectangular beam.  In an ideal 
scenario where different nanowires with the exact same cross-section can be 
manufactured (which depends on the expertise of the materials growers!) a length series 
can be performed similar to Fig 2.8 and 2.13 to extract the exact contact resistance.  

 (2) Sensitivity of the sensing side when the suspended section of the nanowire is long.  
This is a function of the design of the measurement scheme and for our measurement 
system with no additional bridge circuit or improved temperature resolution, NEGs ~ 400 
pW/K, hence maximum possible measurable thermal resistance is 2500 K/µW.  Thus, for 
a signal-to-noise ratio of 10:1, the limit of measurement would be ~250 K/µW.  

Thus, a measurable range of nanowire thermal resistances with <10% error would be 
between 50 and 250 K/µW for a circular cross-section and between 10 and 250 K/µW for 
a rectangular cross-section. 

In summary, the following steps must be followed in order to obtain accurate estimation 
of the thermal properties of the nanowires: 

a. Place the single nanowires of material X on the measurement platform with good 
contact between the nanowire edge and the electrodes on the membranes. 

b. Depending on the properties of material X, improve the contact area between the 
nanowire and the Platinum electrodes using either a Focused Ion or an Electron 
Beam (FIB or FEB) induced deposition.  FIB uses Ga+ ions to dissociate the Pt/C 
precursor gas which subsequently deposits around the nanowire. FEB uses the 
secondary electrons in a Scanning Electron Microscope (typically at lower 
energies ~5keV) to achieve deposition around the selected patterned area.  

c. Measure the thermal conductance of the nanowire including the contacts. Ensure 
that the measured conductance is significantly larger than the NEGs, and the 
temperature drop occurs mainly in the nanowire and negligibly at the contacts 
(small contact resistance). This can be achieved by selecting the correct geometry 

and length of the nanowire, as Gw =
kwA

L . Repeat the measurement with the 

correct length to obtain an accurate estimate of the nanowire conductance. 
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d. Measure the cross-sectional geometry and the suspended length of the nanowire 
and extract the thermal conductivity from the measured conductance. 
 

The error analysis of the measurement scheme is addressed in Appendix 2A below. 
Another important consideration while performing measurements of thermal conductivity 
of nanowires using this platform is the problem of platinum migration during the 
FIB/FEB process and this is addressed in Appendix 2B. 

  



 
 

57 

Appendix 2A: Error Analysis for Thermal Conductance Measurements 

Following Equation (2.2), the heat flow through the nanowire can be written as: 

   
(2A.1) 

 

where is a non-dimensional ratio of the resistance of the PRT and the resistance of the 
suspended legs.  is a constant at all temperatures.  To determine the nanowire 
conductance, Equation (2.3) gives us: 

 
Gw =

Q
ΔTh −ΔTs

  
(2A.2) 

 
Then, error propagation rules determine that: 

 
 

 
(2A.3) 

 

and, 

 
 

 
(2A.4) 

 

Hence, the following error terms need to be determined:  

(1) , (2) , (3)  and (4)  

 

The linear dependence of the PRT resistance with respect to temperature allows us to 
define and .  One cycle of measurement constitutes gathering this raw data at 5 
different local temperature points around TG.  Let’s consider obtaining

at TG = 300K. Then, we measure the resistances and at 

295K, 298K, 300K, 302K and 305K.  The plot of resistance as a function of global stage 
temperature is typically linear as below: 
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Figure	  2A.1	  Measured	  Rs	  and	  Rh	  around	  TG=300K	  used	  for	  calibration	  of	  TCR.	  
 

If we define  and then these slopes can be 

determined to very high accuracy.  In general,  and  when R2 > 

0.9999 for the least squares fitting shown in Fig 2A.1 above.  To understand where this 
error comes from, consider the following error propagation (where i = h or s): 

 
 

 
(2A.5) 

 

Following the analysis of Shi [55], we have verified that  

from the AC measurements of the 4-probe resistance using a lock-in amplifier on both the 
heating and sensing sides.  We haven’t described the detailed error contributions for this 
term, but these are similar to those calculated in Shi [52] and Li [55] and as is seen later 
in this analysis, two orders of magnitude smaller in comparison to other sources of error 
in the measurement. 

To determine the slope , we use a temperature excursion of .  Then, 

. Hence, . Therefore, we 

should expect  at most from direct measurement of the 4-probe resistance 

and the cryostat temperature.  However, this analysis doesn’t account for temperature 
fluctuations of the cryostat ~30-40 mK (at room temperature) which are unavoidable. We 
wait for up to 60 minutes at each gate temperature for the cryostat head temperature to 
stabilize. Hence, the maximum possible error in estimation of slope is given by 

294 296 298 300 302 304 306
4.03

4.04

4.05

4.06

4.07

4.08

4.09

4.1

4.11

Temperature (K)
4−

pr
ob

e 
PR

T
 R

es
is

ta
nc

e 
(k
Ω

)

Rs

Rh

αs ≡
dRs

dTG
~ ΔRs ΔTG

αh ≡
dRh

dTG
~ ΔRh ΔTG

δαs
αs

δαh
αh

≤ 4×10−2

δαi

αi

!

"
#

$

%
&

2

=
δ ΔRi( )
ΔRi

!

"
#

$

%
&

2

+
δ ΔTi( )
ΔTi

!

"
#

$

%
&

2

δRi
Ri

=
δvout
vout

!

"
#

$

%
&

2

+
δiac
iac

!

"
#

$

%
&

2

≈ 5×10−5

αi ΔT =10K

δ ΔTi( ) = 2 ⋅δTi ≈ 2 ⋅ 40mK = 57mK
δ ΔTi( )
ΔTi

≈
57mK
10K

≈ 5.7×10−3

δαi

αi

!

"
#

$

%
& ≈ 6×10−3



 
 

59 

 (obtained from the Root Mean Squared Error of the linear fit to the 

Resistance, Ri vs Temperature, Ti curve) where i represents either the heating or the 
sensing side. 

Now, the error in and  can be determined from the relation:  

 
 

 
(2A.6) 

 
In order to determine the errors in (3) and (4) above, let us consider typical values of 
and .  For the VO2 beams, in general, we observe that  for .  
Hence, we can approximate and .  Then, 

  

Similarly, we can obtain 

 

Going back to Equation (2A.3) above, we can thus estimate the error in Q (heat flux) to 
be: 

 

Then, the error in conductance, G if defined as  is given by Equation (2A.4): 
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Figure	  2A.2	  Heat	  flow	  through	  the	  tapered	  VO2	  beam	  I,	  Q	  in	  nW/K	  as	  a	  function	  of	  the	  
temperature	  difference	  across	  the	  beam,	  ΔT	  in	  K	  at	  TG	  =	  300K.	  

 

In practice, we obtain 200 such points during each measurement cycle as shown in Fig 
2A.2 above.  Further, we repeat each measurement cycle 2-3 times to ensure repeatability 
of the data. Hence, a more accurate estimation of the beam conductance is given by the 
linear slope of the Q vs curve as the current, Ih, is ramped up.  The difference is 
illustrated in the cartoon below: 

 

Figure	  2A.3	  Illustration	  of	  the	  difference	  in	  definition	  of	  the	  conductance	  either	  by	  
considering	  (a)	  a	  single	  data-‐point	  with	  a	  large	  enough	  ΔT,	  or	  (b)	  taking	  the	  local	  slope	  of	  

the	  heat	  flux	  for	  a	  variety	  of	  temperature	  gradients	  across	  the	  suspended	  beam.	  
 

Thus, the error bar can be defined by the Root-Mean Squared Error (RMSE) with a 95% 
confidence interval by fitting the Q vs curve with a linear plot.  
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As an example, we report the conductance as 60±2.7 nW/K with a 95% confidence 
interval (R2 value 0.974), which is an error of 4.5%.  For all beams measured, repeated 
measurements (2-3 times at each gate temperature) account for the error in Temperature 
Coefficient of Resistivity (TCR) of the Platinum Resistance Thermometers (PRTs), thus 
reducing the error in measured and down to 4%. Secondly, slowly ramping up the 
heating current to get ~50 data points per temperature excursion allows for accurate 
estimation of the beam thermal conductance within 4-5%. 

  

αh αs
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Appendix 2B: Problem of Platinum Surface Diffusion 

I’ve emphasized the importance of increasing the suspended length of the nanowire for 
thermal measurement in Chapter 2. Another important consideration during the 
experimental improvement of contact resistance is the diffusion of Platinum during the 
Pt/C Electron or Ion induced deposition stage.  The Focused Electron Beam (henceforth 
referred to as the FEB) is used predominantly in scenarios where electrical contact to the 
nanowire is not sought. Typically, a 5kV FEB with beam diameter <10nm is used so that 
the electrons don’t penetrate too deep into the substrate.  The surface adsorbed precursor 
Pt/C composite gas provided by a Gas Injection System (GIS) is dissociated on the 
surface by the incident primary beam or the secondary or backscattered electrons emitted 
by the surface. An illustration of the process is shown below: 

 

Figure	  2B.1	  Dissociation	  of	  Pt/C	  precursor	  on	  the	  surface	  by	  the	  incident	  primary	  beam	  as	  
well	  as	  emitted	  secondary	  and	  backscattered	  electrons	  (Adapted	  from	  Utke	  et.	  al.	  [58])	  

 

The mechanism of dissociation and deposition using the Focused Ion Beam (henceforth 
referred to as FIB) is identical, although the electron trajectories are significantly 
different.  Two primary differences are:  

(1) Typically the ions in commercial FIBs are Ga+, which are heavy can easily 
displace substrate atoms, especially if the substrate atoms are made up of lighter 
elements.  State of the art machines use lighter atoms such as He+, which 
potentially can prevent this problem.  

(2) Typical energy of the Ion Beam is ~30kV which is larger than that of an electron 
beam. 

Using a FIB always constitutes some degree of etching and amorphization, which is of 
course material dependent.  For example, for our studies of Silicon (Chapter 3) and 
Bismuth (Chapter 4) nanowires, we used a FEB, which caused negligible damage to the 
nanowires. However, for our studies of Vanadium Dioxide (Chapter 5) beams, using the 
FIB allowed us to make electrical contact to the beams and hence measure the electrical 

cascade57 !see Sec. II A 1. As shown in Fig. 5, for the FIB
deposition and etching rate an additional physical sputter
term must be taken into account. Frequently the “FIB” nota-
tion of Eq. !2.1a" is in terms of yields,

Ynet = Ych ! YS, !2.1b"

where Ynet is the net deposition or etch yield, Ych is the
chemical deposition or etch yield due to dissociation of the
molecule, and YS is the physical sputter yield. The plus sign
applies for gas-assisted FIB etching, whereas the minus sign
holds for gas-assisted FIB deposition. The dependence on
energy and radius is not explicitly noted anymore since the
yields are given in units of dissociated or sputtered atoms per
incident ions. The conversion of the sputter yield into a sput-

ter rate RS is differently formulated in literature for FIB. In
the case of FIB induced deposition, the physical sputter rate
is assumed to be independent of the number of adsorbed
precursor molecules58 and RS!r"=YSVf!r". In the case of gas
enhanced etching, the physical sputter rate becomes adsor-
bate dependent and is inversely proportional to the adsorbate
coverage59 RS!r"=YSVf!r"!1−n!r" /n0", where n0 is the den-
sity of a complete monolayer. Conversion of the chemical
deposition or etch yield into a chemical deposition or etch
rate yields Rch!r"=YchVf!r" ·n!r" /n0, i.e., the chemical rate is
proportional to the adsorbate coverage. Using the relation
"=Ych /n0, the FEB notation Rch!r"="Vf!r" ·n!r" of Eq.
!2.1a" is obtained !without explicit notation of energy". Of
note is that the chemical reaction yield for deposition must
override the physical sputter yield in order to get a !visible"
net deposit. Otherwise material removal !sputtering" will
occur.

The next conceptual point is a differential adsorption rate
equation describing the behavior and surface density of mol-
ecules. Four key processes as shown in Fig. 4 are generally
considered to determine the surface density n!r , t" of ad-
sorbed molecules: !a" adsorption from the gas phase gov-
erned by the precursor flux J, the sticking probability s, and
coverage n /n0; !b" surface diffusion from the surrounding
area to the irradiated area governed by the diffusion coeffi-
cient D and the concentration gradient; !c" spontaneous ther-
mal desorption of physisorbed molecules after a residence
time #; and !d" molecule dissociation governed by the prod-
uct "f!r". For the molecule adsorption rate, dn /dt follows

!2.2"

The adsorption term in Eq. !2.2" describes a nondissociative
Langmuir adsorption, where n0 is the maximum monolayer

FIG. 4. Precursor depletion and replenishment in FEB induced processing: Molecules adsorb, desorb, and diffuse at the surface and are dissociated under
electron impact. !a" FEB induced deposition: the nonvolatile dissociation products form the deposit growing coaxially into the beam. Volatile fragments are
pumped away. !b" FEB induced etching: the surface adsorbed molecules dissociate under electron impact into reactive species and react to volatile compounds
with the substrate material.

FIG. 5. Principle of FIB milling !or sputtering". Note the amorphized surface
region containing implanted ions. This physical sputter contribution is also
present during gas-assisted FIB etching and deposition, which was omitted
here for clarity. For electrons physical sputtering is orders of magnitudes
lower at the same charged particle energy due to the different masses of
electrons and ions.
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and thermal properties simultaneously.  In order to prevent damage to the beams, we used 
a lower emission current, ~10pA during the patterning of the contacts. 

Now, since the precursor gas results from sublimation of the precursor gas, typically upto 
~55°C [58], the local temperature at the deposition site can be higher than the nanowire 
and cause migration of the Pt/C along the nanowire length. Fig 2B.2 illustrates this 
problem on a Silicon nanowire. Note, the second image in Fig 2B.2(b) was taken after the 
nanowire broke in the center of the device.  

 

Figure	  2B.2	  (a)	  TEM	  image	  of	  the	  rough	  SiNW	  before	  placing	  on	  microfabricated	  device	  (b)	  
Platinum	  deposit	  imaged	  with	  low	  energy	  Scanning	  Transmission	  Electron	  Microscopy	  
(STEM	  @30kV)	  showing	  surface	  diffusion	  of	  Platinum	  along	  the	  nanowire	  length.	  	  

 

This migration of the Platinum depends on two parameters: (1) time of patterning and (2) 
distance between electrodes on the microfabricated device. A detailed summary is 
provided by excellent work by Gopal et. al. [70], and we have used a modified bridging 
technique to make the electrical/thermal contacts.  Briefly, patterns were made on either 
side of the nanowire/nanobeam, which equaled the height of the nanostructure.  Then, the 
two patterns on either side were bridged on top of the nanostructure that was sandwiched 
in between.  The pattern size was chosen carefully such that each patterning time took 
less than 30 seconds, which minimized the migration along the nanostructure.  And most 
importantly, all the measurements in our work were performed on suspended gaps that 
were >5µm long.  This ensured no thermal/electrical leakage path between the heating 
and sensing membranes.  In summary, by ensuring that 

(1) the suspended portion of the nanowire/nanobeam is 5µm or longer, and 
(2) patterning time is less than 30 seconds for each of the contact pads 
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we were able to avoid thermal and/or electrical leakage with both the FEB and FIB 
bonds. This is a crucial step necessary to prevent another source of error in the 
thermal measurements of nanostructures with our platform. 
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CHAPTER 3 
 

EFFECT OF 
MORPHOLOGY ON THE 
THERMAL 
CONDUCTIVITY OF 
SILICON NANOWIRES 
 

Although it has been qualitatively demonstrated that surface roughness can reduce the 
thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain 
unknown and warrant quantitative studies and analysis. In this chapter, we compare the 
thermal conductivity of vapor-liquid-solid (VLS) grown SiNWs that were controllably 
roughened to that of Electrolessly Etched (EE) SiNWs. Both sets of nanowires were 
thoroughly characterized with transmission electron microscopy (TEM) to obtain detailed 
surface profiles. Once the roughness information (root mean square (rms), σ, correlation 
length, L and power spectra) was extracted from the surface profile of a specific SiNW, 
the thermal conductivity of the same SiNW was measured. The thermal conductivity 
correlated well with the power spectra of surface roughness, which varies as a power law 
in the 1-100 nm length scale range.  These results suggest a new realm of phonon 
scattering from rough interfaces, which restricts phonon transport below the Casimir 
limit. Insights gained from this study can help develop a more concrete theoretical 
understanding of phonon – surface roughness interactions, as well as aid the design of 
next generation thermoelectric devices. 

Parts of the following chapter first appeared in Nano Letters, Vol. 12, No. 11, 2475-2482 
(2012) [64] 

Title: Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires 

Authors: Jongwoo Lim*, Kedar Hippalgaonkar*, Sean C. Andrews, Arun Majumdar, 
Peidong Yang 
*equal contribution 
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Reprinted with permission from Nano Letters. Copyright 2012 American Chemical 
Society. 

3.1 INTRODUCTION 
 

As discussed in Chapter 1, heat transfer in insulators and undoped semiconductors is 
dominated by phonons, which are quantized lattice vibrations.  Phonon occupation 
follows Bose-Einstein statistics, and they can be treated as particles, especially when 
using the Boltzmann transport equation to describe phonon scattering and thermal 
conductivity [25].   In reality, phonons are lattice waves with wave vectors spanning the 
Brillouin zone, and at any given temperature a broad spectrum of phonon modes is 
occupied.  Planck's law of black body radiation can be used to find the dominant phonon 
wavelength carrying the heat, λd ≅ 2πvs kBT  at a particular temperature using Wien's 
displacement law  at 300K [9], [25]. The phonon wavelength is an important 
lengthscale and it has been shown that wavelengths less than 10 nm contribute to 80% of 
thermal conductivity at room temperature in silicon [71].  The other important length 
scale is the scattering mean free path, with as much as 35% contribution arising from 
phonons with mean free paths larger than 1µm [11], [21], [71].  An effective mean free 
path can be defined for dominant phonons carrying the heat, and is predicted to be ~300 
nm at room temperature [33].  Nanostructures smaller than this average mean free path 
have been shown to limit thermal transport [35], [72].  

Recent studies have employed various methods to suppress phonon propagation as a 
strategy towards realizing efficient and cost-effective thermoelectric devices [36], [49], 
[65], [73–75]. Chiritescu and Cahill et. al. demonstrated that disordered layers of WSe2 
exhibited dramatically low thermal conductivity due to interface phonon scattering from 
random stacks of adjacent layers [74], while Kim et. al. [49] were able to reach a thermal 
conductivity below the ‘alloy limit’ by embedding ErAs nanoparticles in crystalline 
In0.53Ga0.47As to efficiently scatter a broad range of phonons at the heterogeneous 
interfaces. While those studies used relatively exotic materials, Joshi et al. showed that 
even nanostructured bulk (nano–bulk) Si/Ge alloys exhibit reduced thermal conductivity 
via increased phonon scattering at grain boundaries [75].  

Similar to nano-bulk Si/Ge alloys, single-crystalline Si nanowires (SiNWs) have also 
shown depressed thermal conductivity due to phonon scattering from the nanowire 
surface.  However, unlike previously mentioned systems, all of the factors that can 
influence phonon propagation have not been quantitatively studied. It has previously been 
reported by Li et. al. that when the diameter of smooth single-crystal SiNWs that are 
grown by the vapor-liquid-solid (VLS) process reduces below 150 nm, the thermal 
conductivity is significantly lower than the bulk value, and can closely follow predictions 
based by Boltzmann transport theory assuming diffuse boundary scattering as the 
dominant phonon scattering mechanism [35]. Specifically, the thermal conductivity at 
300 K ranges from 40 to 9 W/m-K for SiNWs with diameters of 115 nm to 22 nm, 
respectively (see Figure 1.15).  To help explain this dependence, Mingo et. al. proposed 

λd ~1nm
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that despite the smooth surface nature of VLS SiNWs, phonon-surface boundary 
scattering is diffusive rather than specular [76]. This diameter-limited thermal 
conductivity based on diffuse phonon scattering at surfaces follows what has been 
described as the Casimir limit.  Although the smooth VLS SiNWs show thermal 
conductivity reduction, roughened SiNWs produced by electroless etching of Si wafers 
(EE-SiNWs) were found to produce even lower thermal conductivity, as low as 1.6 W/m-
K for a SiNW of 56 nm diameter at 300K (see Figure 1.16) [36]. This surprising result of 
thermal conductivity below the Casimir limit cannot be explained and warrants more 
quantitative study.  

While the exact mechanism of phonon-roughness scattering is not clearly understood, 
there have been various attempts at developing theories behind such interactions. One 
such study by Martin et al. employed the Born approximation toward phonon scattering 
to explain the large suppression in thermal conductivity [77]. They proposed that the 
roughness causes an alteration in the phonon dispersion and used perturbation theory to 
explain the enhanced scattering.  Carrete and Mingo et al, however, believe the Born 
Approximation is invalid at phonon wavelengths similar to the size of the scatterer [78]. 
Instead, they used an atomic level investigation for 2.2 nm diameter SiNWs with surface 
disorder to conclude that reducing the thermal conductivity by one order of magnitude is 
difficult.  Using another approach, Moore et al. proposed a backscattering mechanism by 
using Monte Carlo (MC) simulations of SiNWs with sawtooth structures, but could still 
not fully explain the large decrease in thermal conductivity [79]. More recent indirect MC 
simulations by Wang et al. proposed multiple scattering of phonons at the rough surface, 
while also accounting for impurity scattering, in order to fit their simulation to the 
experimental data of Hochbaum et. al. [80] However, the random nature of roughness on 
the EE-SiNWs was not taken into account, which presumably could lead to frequency-
dependent scattering from the surface. While these theoretical works shed some light on 
the dependence of thermal conductivity on rough surfaces, experimental determination of 
the dependence of thermal conductivity on surface roughness of SiNWs is still lacking 
[50], [81], [82].  

In our work, we introduce a quantitative correlation between thermal conductivity and 
surface roughness by considering the full length of SiNWs under measurement. Rough 
silicon nanowires were prepared in three different ways. Firstly, intrinsic VLS-grown 
SiNWs were etched in a controlled manner to create roughened surfaces. We then 
characterize the roughness on the roughened SiNWs by Transmission Electron 
Microscopy (TEM) and statistically extract parameters to quantify the roughness on the 
surface. We find that root mean square (σ) and correlation length (L) of surface 
roughness does not individually correlate that well with the thermal conductivity. We 
introduce in this work a coefficient obtained from power law behavior of the roughness 
power spectrum at higher frequencies (αp), which seems to correlate well with thermal 
conductivity reduction in single crystalline SiNWs. 
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3.2 NANOWIRE SYNTHESIS AND ROUGHENING 
 

SiNWs having smooth surfaces were grown via the vapor-liquid-solid (VLS) growth 
mechanism using Au nanoparticles. Briefly, mono-dispersed Au nanoparticles were used 
as catalysts on a Si(111) wafer. The wafer was heated to 850 ℃ while a mixture of SiCl4 
and H2/Ar (1:9) was flown into the system. This synthesis process produced single-
crystal Si nanowires with smooth surfaces grown along the <111> direction. More details 
about SiNW growth and conditions can be found elsewhere [83–86]. After growth, the Si 
die was immersed in Buffered Hydrofluoric Acid (BHF, Ammonium Fluoride: 
Hydrofluoric Acid = 5:1), rinsed in Deionized (DI) water, then immersed in KI/I2 
solution to remove the Au residue. To induce roughness, two different processes were 
employed, each showing distinctly unique roughness features, shown in Fig 3.1, which 
enabled us to study a variety of rough surfaces of SiNWs. 

 

Figure	  3.1	  (a)	  SEM	  image	  of	  Si	  nanowires	  with	  Ag	  nanoparticles	  on	  the	  surface	  (b)	  TEM	  
image	  of	  Si	  nanowires	  after	  Ag	  removal	  in	  the	  etching	  method	  #1.	  (c,d)	  HRTEM	  image	  of	  Si	  
nanowires	  from	  etching	  method	  #1	  and	  #2,	  respectively.	  The	  inset	  of	  (c)	  is	  the	  selective	  
area	  electron	  diffraction	  pattern	  (SAED).	  Scale	  bars	  for	  Figure	  S1	  a,	  b,	  c,	  d,	  	  are	  1µm,	  20nm,	  

1nm,	  2nm,	  respectively.	  Adapted	  from	  Lim	  et.	  al.	  [64]	  
	  

3.2.1 Surface Roughening Process 1 (VLS nanowires) 

Prior to the surface roughening steps, the native oxide on the SiNWs was etched in HF 
vapor, and the collection of SiNWs was sonicated with DI water. When added to a 
mixture of AgNO3 (1.74 x10-3 M) and HF (3.53 M), the following reactions took place: 
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The SiNW surface becomes oxidized as a result of a galvanic displacement reaction 
between Ag+ ions and Si, which is then subsequently etched by HF. Metallic Ag 
nanoclusters grow on the surface where the initial reduction of Ag+ ions took place 
thereby indicating where Si was etched [85], [86].  
 
 4Ag+

(aq) + Si(s) + 6F-
(aq) 4Ag(s) + SiF6

2-
(aq)      (3.1) 

 

After 2 minutes, the reaction was quenched with excessive amounts of DI water, and then 
the solution was centrifuged to separate the SiNWs. Once isolated, they were immersed 
in concentric nitric acid for 30 minutes to remove residual Ag nanoclusters. Suspended 
SiNWs were retrieved after repeating the centrifuge and rinsing process as seen in Fig 
3.1(b) and 3.1(c). 

3.2.2 Surface Roughening Process 2 (VLS nanowires) 

SiNWs were immersed in a mixture of AgNO3 (1.74 10-3 M), HF (3.53 M) and H2O2 
(5.57 M) solution for 3 minutes. The reaction was followed with a DI water rinse and 
immersion into concentric nitric acid for residual Ag nanoparticle removal. Since the Ag 
nanoparticles are abundant and etching occurs only locally around them, the surface of 
SiNWs in both etching conditions showed a random, rough morphology, as seen in Fig 
3.1(d). After treatment, roughened SiNWs were transferred to a TEM grid for surface 
analysis and physical manipulation. 

3.2.3 Surface Roughening Process 3 (Electrolessly Etched nanowires) 

The EE wires were made by a similar process used in Hochbaum et. al. [36] and 
described in detail in Peng et. al. [86] Briefly, (100) oriented silicon wafers with varying 
starting resistivity levels (0.04 – 10 Ω-cm) were dipped in an aqueous solution of AgNO3 
and HF acid.  The Ag+ ions are reduced on the surface forming Ag nanoparticles, while 
the silicon is oxidized along the edges of the subsequently formed nanowires. This SiO2 
is etched away by the HF acid present in solution, while additional reduction occurs on 
the top of Ag nanoparticles producing Ag dendrites.  The nanowires produced for this 
study can be up to 100µm long, and the resulting Ag dendritic ‘cloud’ formed in solution 
is etched away using a HNO3 solution for more than a couple of hours.   

The roughness along the length of the nanowires was found to be uniform by TEM 
observation.  After the Ag removal step, Ag nanoparticles were found on the edges of 
some nanowires. Such nanowires were not used for thermal conductivity measurement in 
case this induced local stresses or additional reduction on the surface, which might result 
in defected nanowires. The roughness of nanowires from the same wafer undergoing the 
same etching process was not uniform.  Also, the diameter of the nanowires varied from 
30–200 nm across the wafer.  While selecting the starting wafer resistivity provided some 
level of control over porosity and RMS roughness, it was found that the roughness of two 
different wires from the same batch of nanowires could be very different. Tapering along 
~10µm of a wire is not significant, but can be a few nanometers at most. Energy 
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dispersive X-ray spectroscopy (EDS) experiments with a transmission electron 
microscope (TEM) did not show the existence of residual Ag in the nanowires. 

3.3 MORPHOLOGY CHARACTERIZATION 
 

The surface roughness of roughened VLS SiNWs was characterized by Transmission 
Electron Microscopy (TEM). A series of images at 80,000x magnification were taken 
along the length of each SiNW and then stitched together, which enabled us to obtain 
information about the surface roughness along the entire length, as seen in Fig 3.2(a). The 
diameter is obtained from the TEM images and defined by assuming a circular cross 
section at each point along the SiNW. Therefore, the average diameter of the entire SiNW 
is obtained from the average of all the individual cross sections. After TEM 
characterization, those specific individual SiNWs were manipulated onto pre-fabricated 
microdevices to measure the thermal transport properties, shown in Fig 3.2(b). As 
described in detail in Chapter 2, in order to reduce the thermal contact resistance, a Pt/C 
composite was deposited on both ends of the nanowire using Electron Beam Induced 
Deposition (EBID) inside a FEI-Strauss Dual Beam FIB.  Since only a 2-6 µm long 
section of the wire bridges the thermal device, only the roughness of that specific active 
segment between the contacts was considered in all calculations.  Additionally, since 
curvature of even a 2-6 µm segment can affect the roughness measurement, surface 
profiles were sequentially analyzed along the length in 1 µm segments at a time; see Fig 
3.2(c). To remove any marginal curvature effects, a fifth-order polynomial was used to 
subtract any background curvature.  This procedure was insensitive to the order of 
polynomial chosen, as any polynomial higher than 5 produced the same quantitative 
result. After background subtraction, the rms and the power spectrum of each 1 µm 
section was averaged to generate the entire nanowire’s rms, σ and power spectrum, S(q) 
respectively, shown below in Fig 3.2(d). 
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	  Figure	  3.2	  Surface	  roughness	  characterization.	  (a)	  Serial	  TEM	  images	  of	  Si	  nanowires	  along	  
the	  length	  with	  zoom-‐in	  images	  at	  different	  position.	  (b)	  SEM	  image	  of	  the	  identical	  

nanowires	  from	  (a)	  on	  thermal	  measurement	  device.	  The	  inset	  is	  anchored	  Pt/C	  composite.	  
(c)	  Surface	  profiles	  from	  serial	  TEM	  images.	  The	  length	  is	  1um.	  	  (d)	  Averaged	  power	  

spectrum	  from	  sectioned	  surface	  profiles.	  Red	  line	  and	  dotted	  line	  is	  exponential	  curve	  fit	  
and	  Gaussian	  curve	  fit,	  respectively.	  Scale	  bars	  for	  panel	  (a)	  are	  200	  nm	  and	  20	  nm,	  panel	  

(b)	  is	  2	  µm.	  
	  

The procedure for the Electrolessly Etched (EE) nanowires is slightly different. While the 
roughness profiling technique is the same as described above and illustrated in Fig 3.2 (c) 
and (d), the EE nanowires have other interesting morphology that affects phononic 
transport. For example, it has previously been shown by selected area electron diffraction 
(SAED) in a TEM that the EE technique can be used to produce mesoporous silicon 
nanowires that have a crystalline silicon scaffolding [84].  The porosity for a single step 
EE procedure can be controlled by the doping level of the original silicon wafer and 
concentration of the AgNO3 etchant to produce pore sizes varying between 4-16 nm [87].  
Such pores are clearly visible by bright field TEM.  However, one can imagine that wires 
with a discontinuous core have a phonon mean free path that is limited not by the 
diameter of the wire, but the pore-to-pore distance instead.   Hence, the diffusive mean 
free path is less than the overall wire diameter, effective ,boundary < D . We have established two 
levels of control to ensure that the nanowires studied in this work are continuous and 
without pores.  Firstly, we grew the nanowires from high resistivity (>4 mΩ-cm) silicon 
wafers using a mild AgNO3 concentration of 0.0235M, mixed in with 5.39M HF in DI 
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water solution which is previously known to produce non-porous wires [84], [87].  
Secondly, we directly imaged the nanowires before thermal transport with a 200kV FEI 
Tecnai F20 operated in scanning transmission electron microscopy (STEM) mode and 
equipped with a high angle annular dark field detector (HAADF). In this mode, a highly 
convergent electron probe focused to 1-2Å is rastered across the sample, and only the 
highly scattered transmitted electrons are collected. Image contrast is based on incoherent 
elastic scattering and varies approximately linearly with thickness and with the atomic 
number squared (Z2) of the constituent material [88], [89].  STEM contrast of the single 
phase Si nanowires is thus capable of estimating the projected thickness of the nanowires, 
and pores (if they exist) are clearly seen as shown in Fig 3.3(a).  Also, highly scattering 
Ag atoms (Z = 47) will appear much brighter compared to the Si (Z = 14) nanowires in 
STEM images providing easy identification of Ag impurities. 

We initially measure the cross-sectional area of a non-porous Si nanowire using three-
dimensional electron tomography, where the nanoscale 3D shape and surface roughness 
of the nanowire can be reconstructed from a series of projection images at different 
viewing angles (see Figure 3.3(b)) [90–92]. The tomogram clearly shows that the wires 
are non-circular, which reduces the effective phonon mean free path compared to wires 
with a circular cross-section. A single measurement from the projection image of the 
same wire shown in the 3D tomogram is shown in Fig 3.3(c) gives a lateral width w of 65 
nm. Assuming the wire exhibits a circular cross-section with this diameter, as most other 
experiments have done previously, the nanowire has an apparent cross-sectional area that 
is on average 30% larger than the actual average cross-section as measured along 200 nm 
of the 3D tomogram.  Unfortunately, electron tomography is difficult and time 
consuming to apply to numerous wires, and we instead apply a simpler technique 
assuming a linear relationship between thickness and STEM intensity normalized by the 
incident beam current. A comparison between this technique and the tomography results 
yields a similar cross-sectional area, and is much easier to apply on many wires. 
Estimations of the cross-sectional area from STEM projection images are generated by 
integrating the intensity under a line profile across the lateral width of a nanowire.  The 
integrated area is normalized with respect to the total current of the incident electron 
beam to allow for variations of alignment and instrument performance on different days. 
Fig 3.3(d) shows the cross-sectional area of a smooth vapor-liquid-solid (VLS) nanowire, 
which should be nearly circular, used to test our simpler method, and the error was found 
to be <5%. Further, STEM can be used to identify defects such as necks and junctions, 
and reject such nanowires from thermal measurements.  Finally, the cross-section for 
measured wires is checked at different points along the length of the suspended nanowire 
to confirm uniformity along its length.  
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Figure	  3.3	  Morphology	  of	  EE	  SiNWs	  (a)	  Porous	  nanowire	  imaged	  with	  STEM	  from	  a	  wafer	  
with	  starting	  resistivity	  ρ	  <	  0.03	  Ω-‐cm	  (b)	  Three	  dimensional	  tomogram	  showing	  a	  non-‐

circular	  cross-‐section	  and	  roughness	  along	  the	  edges	  of	  the	  nanowire	  (c)	  STEM	  profile	  for	  a	  
circular	  cross-‐section	  smooth	  VLS	  nanowire	  (d)	  STEM	  profile	  for	  a	  non-‐circular	  cross-‐

section	  EE	  nanowire.	  
 

Martin et. al. postulated based on the Born Approximation [77] that the frequency 
dependent boundary scattering rate τ i, j−1(E)  can be represented by a surface integral in 
energy, S( ′E )  where the integral is taken over the area of the surface of constant energy, 
E’ as: 

 
τ i, j
−1(E)∝ S(q)

∇k 'E ' k '( )
dSi (E ')

E '=Ei

∫ ,     q = k '− k  
 

(3.2) 

 
Here they considered a phonon with wavevector k from branch i scattering to a phonon 
with wavevector k’ from branch j.  Also, S(q)  is the Fourier transform of the spatial 
autocorrelation function, or in other words, the power spectrum, the dilated rough surface 
that scatters the phonons, which constitutes the perturbed Hamiltonian H’ allowing for 
the transition from the incoming wavevector, k to the scattered wavevector k’.  Sadhu and 
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Sinha, using a wavelike phonon transport approach, considered coherent scattering of 
phonons from a rough surface, and presented that for modes at frequency ω [93]: 

 

 mn
−1 ω( )∝ S q( ),q = kmn − kpq

pq
∑   

(3.3) 

Where mn ω( )   is the mean attenuation length for those phonons scattering from incident 
direction kmn to a scattered direction kpq  and S(q) is the power spectrum. Thus, in order to 
understand scattering of phonons from a rough surface, experimental determination of 
S q( ) is crucial .  It is common to assume that the autocovariance function of a random 
rough surface to follow an exponential curve given by CE(r) as also evidenced in 
literature shown in Equation (3.4) below [77], [94–97] 

 CE (r) =σ
2e−

r
L  (3.4) 

 
where CE(r) is the autocovariance function of the Si surface roughness, Δ r( )  is the 

extracted surface profile, and σ is the rms value of Δ r( ) , L is the correlation length, 
which is a statistical parameter that determines the decay of the autocovariance and is 
related to the lateral length scale of the roughness. By convolution theorem, the power 
spectrum is the Fourier transform of the autocovariance function, yielding a Lorentzian 
form given by: 

 SE q( ) = 2LΔ2 1
1+ 2πLq( )2"
#

$
%

 
 

(3.5) 

 
In this study, 1-D power spectrum derived from the Fast Fourier Transform (FFT) was 
calculated for the surface profile with ordinary wavevectors given by q in units of nm-1. 
As a first approximation, since previous theoretical work has assumed an exponential 
autocovariance fit for calculating surface roughness, the Lorentzian defined in Equation 
(5) is used to extract L from the total power spectrum, S(q) [54], [77], [98].  
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3.4 THERMAL CONDUCTIVITY 
 

In the first part of this section, we’ll focus on individual TEM characterization of the 
roughness and corresponding thermal conductivity measurements of roughened Vapor 
Liquid Solid (VLS) nanowires (processes 1 and 2 above). Using the roughness 
characterization technique shown above, σ and L values from TEM images of four 
different, individual roughened VLS SiNWs are shown in Fig 3.4 below. Two SiNWs 
with comparable L (8.9 nm and 8.4 nm) and similar D (77.5 nm and 69.7 nm) are shown 
in Figures 3.4(a) and 3.4(b), respectively. The TEM images clearly depict the 
significantly different rms values of the two SiNWs (σ = 2.3 nm and 4.3 nm), which lead 
to their correspondingly different thermal conductivities (10.68 W/m-K and 5.09 W/m-K, 
respectively).  In Figures 3.4(c) and 3.4(d), on the other hand, the nanowires have 
comparable diameters D (78 nm and 70 nm) and σ values (~ 3.3 nm and ~ 2.8 nm) 
respectively. However, the SiNW in Fig 3.4(d) has roughness with L ~ 6.4 nm, which is 
half the value of that for the SiNW in Fig 3.4(c) (L ~ 13.1 nm). A smaller value of L 
corresponds to roughness features occuring at a shorter length scale, which scatter 
broadband phonons more effectively [77], [93], [99]. The resulting thermal conductivity 
at 300 K of the SiNW in Fig 3.4(d) (7.78 W/m-K) is lower than that of the nanowire in 
Fig 3.4(c) (17.16 W/m-K). This provides evidence towards enhanced phonon-surface 
scattering in SiNWs with shorter L, as is also evidence in the recent paper by Ghossoub 
et. al. [100]. 
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Figure	  3.4	  Extraction	  of	  rms,	  σ	  and	  L	  from	  TEM	  images	  and	  their	  effect	  on	  thermal	  
conductivity.	  (a-‐b)	  rms,	  σ	  effect	  on	  thermal	  conductivity,	  (c-‐d)	  Correlation	  length	  (L)	  effect	  

on	  thermal	  conductivity.	  All	  scale	  bars	  are	  1µm.	  	  
 
The thermal conductivities of these and other roughened VLS SiNWs are plotted as a 
function of temperature in Fig 3.5. Nanowires with comparable L (8.4 – 8.9 nm) and D 
(67.9 – 79.8 nm) were selected in Fig 3.5(a), while nanowires with comparable rms (σ = 
2.8 – 3.3 nm) and D (70 – 77.9 nm) were chosen in Fig 3.5(b). Clearly, the increase in 
rms from σ ~ 0 (as-grown) to 4.3 nm drops the thermal conductivity from 25 W/m-K to 
5.09 W/m-K at 300K. Similarly in Fig 3.5(b), as σ remained comparable and L decreased 
(down to 6.4 nm), a drop in thermal conductivity from 24.63 W/m-K to 7.78 W/m-K was 
observed.  Thus, utilizing the full power spectrum of the roughness profile and looking at 
the σ and L values, we can predict that rougher wires with higher σ and lower L tend to 
have a lower thermal conductivity. 
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Figure	  3.5	  Thermal	  conductivity	  with	  temperature	  as	  a	  function	  of	  L	  and	  rms,	  σ.	  (a)	  Thermal	  
conductivity	  dependence	  on	  correlation	  length	  L	  with	  controlled	  rms,	  σ	  and	  diameter.	  (b)	  

Thermal	  conductivity	  dependence	  on	  σ	  with	  controlled	  L	  and	  diameter.	  	  
 

However, in order to understand the nature of scattering from the surface of the 
nanowires, we need to consider phonon wavelengths as well, which previous studies have 
lacked.  In using the kinetic theory for phonons, we can consider that at any temperature, 
the order of magnitude estimate for a dominant wavelength carrying the heat is given by 

, where vg is the average group velocity of the phonons at thermodynamic 
temperature T. At 300K, λdom ~1nm .  However, in reality, there is a large spectrum of 
phonon wavelengths that contribute to the thermal conductivity.  As shown in Figure 
3.6(a) [71], a strong spectral dependence of the contribution of phonons to thermal 
conductivity exists and up to 80% of the thermal conductivity at 300K in bulk Si can 
arise from phonon wavelengths ranging from 1-100 nm.  Using this as a starting point for 

λd ~ 2.9kBT vg
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analysis and taking a careful look at this wavelength bandwidth of the roughness power 
spectrum, S(q), it is found that a power law fit captures the power spectrum more 
accurately (with a least squares fit of >0.9 for all nanowires measured) than a Lorentzian, 
as shown in Figure 3.6(b). The fit used to then define the roughness is given by: 
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10−2→100
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q

#
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%

&
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(3.6) 

 
where only wavevectors, q of the roughness from 10-2 to 100 nm-1 (1-100 nm) are 
considered.  α p and n are parameters derived from the fit, and q0 = 1/0.313 nm is the 
inverse of the lattice constant of Si in the <111> direction.  The exponent n is related to 
the nature of the roughness and is roughly the same for all nanowires measured in this 
study, and was determined to be nrms = 2.77 and nstandard deviation = 0.075.  This indicates 
that the intentional etching of the VLS nanowires described in the earlier section 
produces a certain type of roughness where the relative amplitudes at different 
wavelengths or the ratio of amplitudes at different wavelengths, represented by the 
exponent n, remain roughly the same. On the other hand, α p  is related to the broadband 
roughness amplitude parameter of the nanowire surface at these relevant wavelengths.  
We expect a larger α p  for a rougher nanowire.  Thus, the thermal conductivity is 
anticipated to be lower when the value of α p  is higher, while the exact functional 
dependence is difficult to ascertain.  
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Figure	  3.6	  (a)	  Thermal	  conductivity	  accumulation	  as	  a	  function	  of	  wavelength	  at	  300K	  and	  
1000K	  [71].	  Roughly	  80%	  of	  contribution	  to	  thermal	  conductivity	  at	  room	  temperature	  
comes	  from	  phonons	  with	  wavelength	  between	  1	  and	  100nm.	  (b)	  Roughness	  Power	  
Spectrum	  at	  the	  selected	  length	  scales	  (1-‐100nm).	  	  While	  the	  actual	  Power	  Spectrum	  is	  
shown	  in	  blue,	  the	  Lorentzian	  fit	  used	  to	  extract	  σ	  and	  L	  is	  shown	  in	  red	  to	  be	  a	  poor	  fit	  at	  
the	  relevant	  length	  scales.	  	  The	  Power	  Law	  Fit	  shown	  in	  black	  captures	  the	  roughness	  

better.	  
 

In order to better understand the individual roles played by rms, diameter, correlation 
length, and the high frequency amplitude term, α p , towards reducing phonon 
propagation, the room temperature thermal conductivity of SiNWs as a function of 
different parameters are plotted in Fig 3.7(a-f). Comparing Figures 3.7(a) and 3.7(b), it 
can clearly be seen that rms exhibits a more pronounced impact on the thermal 
conductivity than the diameter. This clearly indicates that for rough nanowires rms, rather 
than diameter (within the range measured), is the major limiter of phonon propagation.  
Further, as illustrated in Figure 3.7(c), there is no clear dependence of thermal 
conductivity purely on the correlation length L, which indicates that L by itself doesn’t 
capture the surface roughness accurately. The fact that the rms rather than the diameter 
has more influence on phonon transport is qualitatively different from the trend observed 
with smooth SiNWs, where boundary scattering occurs in the diffusive regime [35], [76]. 
In this diffusive picture, the nanowire surface absorbs all phonons impinging upon it and 
thermalizes it; then, behaving as a blackbody (to ensure elastic scattering), re-emits the 
phonons at a rate proportional to the local temperature of the surface.  In this new sub-
diffusive regime, where the thermal conductivity, k is lower than the Casimir Limit, we 
first propose a dimensionless roughness correlation factor to define the total roughness, 
σ/L, which is based upon the following physical intuition: the magnitude of the roughness 
is (1) proportional to L and (2) inversely proportional to rms at 300K (Fig 3.7(d)). While 
it is clear that rms and L are the important parameters that define the roughness of the 
surface, they do not directly represent the roughness parameter that is relevant for phonon 
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scattering. Therefore, it is not surprising that although there seems to be a better trend of 
thermal conductivity with σ/L as opposed to that with σ or L individually, the correlation 
is not very strong and shows scatter.  

 

Figure	  3.7	  Thermal	  conductivity	  as	  a	  function	  of	  three	  roughness	  factors	  (σ,	  D	  and	  L).(a)	  
Thermal	  conductivity	  at	  300	  K	  as	  a	  function	  of	  rms	  with	  different	  range	  of	  diameter.	  

(b)Thermal	  conductivity	  as	  a	  function	  of	  diameter	  with	  different	  range	  of	  rms.	  (c)Thermal	  
conductivity	  as	  a	  function	  of	  diameter	  with	  different	  range	  of	  L.	  (d)	  Thermal	  conductivity	  as	  
a	  function	  of	  σ/L	  for	  300K.Correlation	  between	  thermal	  conductivity	  and	  σ/L	  gets	  stronger	  
than	  rms	  or	  D	  only.	  (d)	  has	  a	  trend	  similar	  to	  REF	  8	  figure	  3a	  except	  the	  discrepancy	  in	  L.	  
(e,f)	  Thermal	  Conductivity	  as	  a	  function	  of	  α p 	  	  (plotted	  on	  a	  log	  scale)	  at	  300	  K	  and	  100	  K,	  

respectively.	  As	  α p 	  increases,	  the	  wires	  are	  rougher,	  with	  wavelengths	  in	  the	  1-‐100nm	  
range	  and	  the	  thermal	  conductivity	  drops	  significantly.	  

 

Looking back at Figure 3.6(b) in detail, the Lorentzian fit doesn’t capture roughness 
spectrum at the relevant wavelengths (1-100nm) very well.  Also, the roughness length 
scales that are relevant for phonon scattering are better captured in the power spectrum, 
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which is represented by two parameters α p  and n.  Since n is a constant across all the 
etched wires, what captures the roughness structure over the relevant phonon scattering 
band is the parameter α p . Figure 3.7(e) plots the thermal conductivity as a function of α p  
for various wires at 300K, and what is observed is a much better fit.  This indicates that 
directly relating the lateral length scale of the roughness to the wavelength bandwidth of 
phonons contributing to thermal conductivity is key to understanding the physics of 
roughness boundary scattering.  Figure 3.7(f) plots the thermal conductivity as a function 
of α p  for the same wires at 100 K, which is a marginally better fit.   

Now, we look at the thermal conductivity of rough EE wires. We avoid those that 
demonstrate porosity, silver particles, defects, and/or necks as characterized with 
TEM/STEM which might impede phonon transport in a non-controllable fashion.  We 
have plotted the thermal conductivity of 7 different wires as a function of diameter, d, 
rms, σ and power spectra, αp in Figures 3.8(a), (b) and (c) respectively.  While the rms 
roughness, σ is sensitive to roughness from the total spectral range of the surface profile, 
the power spectra is only for a spectral range q=0.01 to 1 nm-1.  In order to drive home 
the observation that phonon scattering physics depends on the roughness, we have also 
provided a direct comparison with roughened Vapor-Liquid-Solid (VLS) Silicon 
Nanowires in the figures [64]. As seen in Figure 3.8(a), the thermal conductivity does not 
depend strongly on the diameter, a trend that was also observed in the roughened VLS 
NWs.  This is the first indication of a possible deviation from diffusive transport of 
phonons, since the mean free path is not limited by the diameter, but something lesser. 
While there is a weak dependence of the thermal conductivity on rms roughness for the 
roughened-VLS wires, the dependence disappears for the EE wires (see Figure 3.8(b)). 
On the other hand, the dependence of measured thermal conductivity on αp follows the 
same trend as that observed for the roughened-VLS nanowires (Figure 3.8(c)).  We 
expect a rougher wire to have a larger value of αp, and an enhanced rate of scattering of 
the phonons and hence a lower thermal conductivity. 

 

Figure	  3.8	  Comparison	  of	  thermal	  conductivity	  of	  EE	  SiNWs	  with	  rough	  VLS	  SiNWs	  (a)	  
Thermal	  conductivity	  as	  a	  function	  of	  diameter	  (b)	  Thermal	  conductivity	  as	  a	  function	  of	  
rms	  roughness	  (c)	  Thermal	  conductivity	  as	  a	  function	  of	  α p ,	  spectral	  roughness.	  The	  EE	  

wires	  have	  low	  rms	  roughness	  yet	  still	  exhibit	  low	  thermal	  conductivity,	  demonstrating	  the	  
importance	  of	  the	  spectral	  characterization	  of	  roughness.	  
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The enhanced scattering of phonons from rough surfaces observed in this study 
qualitatively follows predictions from earlier theoretical work. Separately, both Alvarez 
et. al. and Moore et. al. predicted stronger backscattering of phonons at periodically 
rough surfaces with longer σ and shorter L by using phonon hydrodynamics and Monte 
Carlo simulations, respectively [79], [101]. However, direct application of this analysis is 
hindered by the non-uniform roughness profile obtained from the electrochemical etching 
technique, which may behave differently than the periodic structure.  A possibly more 
applicable theory by Wang et. al. [80] suggested that phonons are localized at the rough 
surface due to multiple boundary scattering occurrences within a single roughness feature 
on the surface. They pointed out that thermal conductivity decreases as features becomes 
sharper, which can be interpreted as a shorter L and higher σ.  However, they did not look 
at the effect of high frequency roughness that may selectively scatters phonons more 
effectively than the low-frequency ones [80]. Martin et. al. [77]and Santamore et. al.  [97] 
use a perturbative approach due to the change in potential at the surface resulting in 
enhanced boundary scattering, however it remains to be seen if these claims are valid 
given the range of correlation lengths and rms we have observed in our work. While their 
study used a correlation length, L = 6 nm, our observed L varies from 8.6–22.3 nm with 
rms values range from σ = 1.8 nm to 4.3 nm.  Sadhu et. al. and Ghossoub et. al. used a 
broader range of correlation lengths that fit the power spectrum and used a Green Kubo 
analysis coupled with the Landauer Formalism to extract attenuation lengths for all 
phonon modes [93], [100].  Some modes had reduced phonon group velocity in their 
analysis, which they postulated resulted in a lower thermal conductivity.   

However, none of these theoretical studies looked at the wavelength dependent 
conductivity with scattering from the surface for a selective range of roughness 
wavelengths.  To our best knowledge, our experimental work provides first evidence for 
frequency dependent phonon scattering from rough surfaces at room temperature.   We 
hypothesize that as high-frequency roughness of the nanowire surface increases, there is 
enhanced boundary scattering, thus reducing the thermal conductivity significantly. This 
experimental study warrants further theoretical exploration of scattering of phonons from 
a rough boundary at specific relevant wavelengths in order to understand the exact 
correlation between the statistically defined α p  parameter and the thermal conductivity.   
Every attempt was made at obtaining the most accurate and certain data possible, but 
there are, however, limitations to our method of characterizing roughness. First, TEM 
images are 2-dimensional projections of a 3-dimensional material. Therefore, roughness 
profiles from the projected surface images neglect hidden roughness features not 
occurring at the respective edge of the sample. But due to the isotropic nature of the 
etching process and the large number of samples measured, the determined relations 
found here are statistically meaningful. Second, the fitting curve to power spectrum is 
strongly sensitive to low frequency peaks which account for not only rough surface but 
also the curvature of the SiNWs. Hence, the choice was made to fit a power law to the 
high frequency section of the Power Spectrum only.  Third, since L is calculated using 
the assumption that the autocovariance of the surface profile is an exponential, the 
uncertainty of L can be estimated based on the coefficient of determination from a least-
squared fit, R2 when Equation (3.6) is used to fit the original power spectra. Hence, only 
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the Lorentzian fitting functions where R2 is larger than a certain value (0.63) are strictly 
chosen. Despite the relatively large uncertainty in L, as can be seen in Figure 3.7(d), 
trends of the dependence of thermal conductivity, k with σ/L are clearer than that of 
thermal conductivity purely with rms. In terms of the power law fit, the choice of 
frequency limits was informed from A. Henry et. al. [71] and can be significantly 
temperature dependent [11], [26]. The thermal conductivity strongly correlates with the 
parameter, αp, extracted from a power law fit of the roughness power spectrum, which 
opens up a new way of not only characterizing rough surfaces but also shed some light on 
the possible physics at work. 
In conclusion, we are able to derive three primary results from our careful study of the 
effect of morphology on the thermal conductivity of silicon nanowires: (1) Irrespective of 
the roughening chemistry, phonon scattering from rough interfaces to reduce thermal 
conductivity remains robust.  (2) Characterizing the roughness requires paying attention 
to the dominant wavelength of phonons carrying heat at any particular temperature.  
Using a power law to characterize the roughness captures roughness at the particular 
frequencies of interest, indicating a relationship between the wavelength of phonons and 
the wavelength of the roughness.  (3) For EE wires with a lower rms roughness than 
roughened-VLS wires, the spectral roughness at the range of 1-100nm is critically 
defined as a power spectra amplitude.  As this parameter, αp is increased for rougher 
wires, we can see a substantial decrease in thermal conductivity down to 5 W/m-K. 
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CHAPTER 4 
 

OBSERVATION OF 
ANISOTROPY IN THERMAL 
CONDUCTIVITY OF 
INDIVIDUAL SINGLE-
CRYSTALLINE BI NANOWIRES 
 

The thermal conductivity of individual single crystalline Bi nanowires grown by the on-
film formation of nanowires (ON-OFF) has been investigated. We observed that the 
thermal conductivity of single-crystalline Bi nanowires is highly anisotropic. Thermal 
conductivity of nanowires (diameter ~ 100nm) in the off-axis [102] and [110] directions 
exhibit a difference of ~ 7.0 W/m·K. The thermal conductivity in both growth directions 
is diameter-dependent which indicates that thermal transport through the individual Bi 
nanowires is limited by boundary scattering of both electrons and phonons. This huge 
anisotropy in thermal conductivities of Bi nanowires suggests importance of direction-
dependent characterization of charge, thermal transport and thermoelectric properties of 
Bi nanowire. 

The following chapter first appeared in ACS Nano, Vol. 5, No. 5, 3954-3960 (2011) [102] 

Title: Observation of Anisotropy in Thermal Conductivity of Individual Single-
Crystalline Bismuth Nanowires 

Authors: Jong Wook Roh*, Kedar Hippalgaonkar*, Jin Hee Ham, Renkun Chen, Ming 
Zhi Li, Peter Ercius, Arun Majumdar, Woochul Kim, and Wooyoung Lee 
*equal contribution 

Reprinted with permission from ACS Nano. Copyright 2011 American Chemical Society. 
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4.1 INTRODUCTION 
 

Bismuth (Bi), which is a semimetal with a rhombohedral crystal structure and highly 
anisotropic Fermi surface [103–105], has attracted great attention due to its unique 
transport properties such as anisotropic carrier transport [103], bipolar electrical 
resistivity [106] and low carrier effective masses [107], revealed by earlier research on 
Seebeck coefficient [108], galvanomagnetic effects [106], de Haas-Van Alphen effects 
[109], and cyclotron resonance [107], [110]. Furthermore, the electrical measurements on 
Bi nanowires have thrown light on the semimetal-to-semiconductor transition below a 
diameter of the Bohr radius of Bi (~50 nm) [111], [112]. However, few direct 
measurements of thermal conductivity of Bi have been performed illustrating a strong 
interplay between electrons, holes and phonons as heat carriers. In semimetallic Bi, the 
electronic contribution was significant to thermal conductance from 100 to 300 K while 
the phonons contributed almost exclusively to thermal conductance below 50 K [103], 
[113]. Also, most electrical and thermal transport properties of bulk Bi have been 
understood in terms of the trigonal (parallel) and three equivalent binary (perpendicular) 
crystal orientations. This directional dependent behavior not only gives the electrons and 
holes different effective masses, but also results in a distinction in the speed of sound 
[114]. Fundamental understanding of the carrier scattering in Bi can be furthered by 
tailoring the geometries of Bi to impede phonon and electronic carriers, as well as tune 
the band structure based on quantum confinement effect [111], [112], [115]. In particular, 
these would be very useful to enhance the power factor (S2σ) where S is the Seebeck 
coefficient and σ is the electrical conductivity and/or decrease the thermal conductivity, κ 
for thermoelectric applications [115], [116].  

The efficiency of thermoelectric devices is quantified by the thermoelectric figure of 
merit (ZT) of a given material, which is defined as ZT=S2σT/κ. Single crystalline Bi 
nanowires have been of great importance due to the expected quantum confinement 
effect, which should enhance the power factor without significantly affecting κ [117], 
[118]. In prior work, it was shown that high-quality single crystalline Bi nanowires 
grown by the on-film formation of nanowires (OFF-ON) [119] have very large electronic 
mean free paths (λe ~ 1.35 µm) which are about an order of magnitude higher than bulk 
[103]. This arises due to a reduction of the Fermi Energy, EF with diameter of nanowires 
(dw) [119]. The mean free path of phonons at 300K is estimated to be about 11−14 nm 
based on the Dulong-Petit limit and ℓ  ~  3𝜅/(𝐶!×𝜐), [113] where 𝜅 is the measured 
thermal conductivity of bulk Bi (about 8 − 10 W/m·K), 𝐶! is the volumetric specific heat 
of bismuth (about 1.2 J/cm3·K) and 𝜐  is the speed of sound (~ 1790 m/s). Thus, 
nanowires of diameters close to the mean free path can effectively scatter both phonons 
and electrons. So far, only a few studies have been conducted on thermal transport in Bi 
nanowires. Heremans et al. [120] investigated the thermal conductance of Bi nanowires 
embedded in anodic alumina, e.g., Bi nanowire/alumina template composite. Moore et al. 
[121] studied thermal conductivity of individual Bi nanowires grown by the vapor 
deposition method. They demonstrated thermal conductivity suppression in Bi nanowires 
compared with bulk Bi, yet most of their study was performed on polycrystalline Bi 
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nanowires with the exception of one single crystalline Bi nanowire. Furthermore, it 
should be noted that the thermal conductivity of bulk Bi is highly anisotropic [103]. In 
this chapter, we show the first systematic study on the thermal conductivity of individual 
single crystalline Bi nanowires with various diameters and different crystal orientations, 
thus throwing some light on the transport mechanism in this prospective high efficiency 
thermoelectric material. 

4.2 NANOWIRE GROWTH AND MEASUREMENT 
 

The OFF-ON, a stress-induced method for growing high-quality single crystalline 
nanowires, was employed in this work to grow single-crystalline Bi nanowires [119]. 
Since detailed growth mechanisms are available in Refs. [119] and [122], only a brief 
explanation is provided here. A Bi thin film was deposited onto a thermally oxidized Si 
(100) substrate using an ultrahigh vacuum (UHV) radio frequency (RF) sputtering system 
with a base pressure of 4 × 10-8 Torr. After heat treatment of as-grown Bi thin film at 270 
℃ for 10 hours, Bi nanowires were extruded from the surface of the as-grown Bi film. 
This spontaneous growth of Bi nanowires is attributed to the substantial atomic diffusion 
to relax compressive stress on the as-grown Bi film. This originates from the mismatch of 
thermal expansion coefficient between Bi films and SiO2/Si substrate during heat 
treatment as illustrated in Fig 4.1(a). As shown in Fig 4.1(b), Bi nanowires grown by 
OFF-ON were found to be uniform in diameter with aspect ratios exceeding 1000. A 
high-resolution transmission electron microscopy (HR-TEM) image and a corresponding 
selected area electron diffraction (SAED) pattern demonstrate that the Bi nanowires are 
single-crystalline with a growth direction of [110] and [102], as shown in Fig 4.1(c) and 
4.1(d), respectively. Based on this method, thermoelectric materials, such as Bi [119], 
Bi2Te3 [122], BiSb, and Bi2Se3 nanowires could be produced in single crystalline phase. 
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Figure	  4.1	  Illustration	  of	  growth	  mechanism	  and	  structural	  characteristic	  of	  the	  single-‐
crystalline	  Bi	  nanowires.	  (a)	  An	  illustrated	  representation	  of	  the	  growth	  mechanism	  of	  Bi	  
nanowires	  using	  OFF-‐ON	  method	  (b)	  A	  SEM	  image	  of	  a	  side	  view	  of	  as-‐grown	  Bi	  nanowires	  
extruding	  from	  the	  surface	  of	  the	  Bi	  films.	  (c)	  A	  low-‐magnification	  TEM	  image	  of	  a	  single	  

crystalline	  Bi	  nanowires:	  the	  SAED	  pattern	  (top	  right)	  of	  the	  nanowire	  along	  the	  [221]	  zone	  
axis	  indicates	  the	  growth	  direction	  of	  the	  nanowires	  is	  [110],	  and	  a	  high-‐resolution	  TEM	  

image	  (bottom	  right)	  of	  the	  Bi	  nanowire	  shows	  a	  perfect	  single-‐crystalline	  material	  without	  
defects.	  (d)	  A	  low-‐magnification	  TEM	  image	  of	  a	  single	  crystalline	  Bi	  nanowires:	  the	  SAED	  
pattern	  (bottom	  right)	  of	  the	  nanowire	  along	  the	  [221]	  zone	  axis	  indicates	  the	  growth	  

direction	  of	  the	  nanowires	  is	  [102].	  
 

The same suspended platform was employed in measuring the thermal conductivity of 
individual Bi nanowires. Detailed description of thermal conductivity measurement based 
on these devices is in Chapter 2. Individual nanowires are placed on the membranes via 
either manipulation or wet transfer.  Bismuth forms a stable oxide layer on exposure to 
air [105], [112], [121].  The presence of the native oxide layer on the surface of the 
nanowires and thermal contact resistance between the Bi nanowire and membrane causes 
an uncertainty in the thermal conductivity measurement. We observe the oxide thickness 
for the as-grown Bi nanowires as 2–7 nm [119], [123]. For a Bi nanowire with a 5 nm-
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thick oxide layer, the thermal conductivity of the nanowire can be underestimated by 6 – 
29 % depending on the diameter and length of the nanowires that bridge the membranes. 
The thermal conduction through the oxide layer was extracted by using similar 
calculation proposed by Moore et al. [121] Thermal contact resistance between the 
nanowire and the isothermal suspended membrane on either side is another source of 
error in thermal conductivity measurement. This error has been hypothesized to be as 
large as 15% in similar measurements on other nanowires [52], [124]. Considering the 
errors due to the native oxide layer from the outer surface of the nanowires and the 
thermal contact resistance, the measured thermal conductivity of Bi nanowires were 
corrected in this work.  An illustration of the device after placement of a nanowire and 
Focused Electron Beam based Pt/C deposition is shown below in Fig 4.2. 

 

Figure	  4.2	  (a)	  A	  SEM	  image	  of	  the	  suspended	  micro-‐device	  for	  measuring	  the	  thermal	  
conductivities	  of	  the	  individual	  Bi	  nanowires.	  (b)	  A	  SEM	  image	  of	  an	  individual	  Bi	  nanowire	  
placed	  between	  the	  heating	  membrane	  and	  sensing	  membrane.	  Pt/C	  composite	  thermal	  
contact	  was	  locally	  deposited	  to	  improve	  the	  thermal	  conduction	  between	  the	  Bi	  nanowire	  

and	  membrane	  using	  the	  electron	  beam	  of	  a	  dual-‐beam	  FIB.	  
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4.3 ANISOTROPIC AND DIAMETER-DEPENDENT 
THERMAL CONDUCTIVITY OF BISMUTH 
NANOWIRES 
 

It has been reported that the thermal conductivity of bulk Bi depends highly on the crystal 
orientation [103]. In order to confirm the growth direction on the thermal-conductivity-
measured nanowires, HR-TEM coupled with Selected Area Electron Diffraction (SAED) 
was employed after the thermal conductivity measurement was completed. Employing 
this technique, not only could we corroborate that the nanowires retained their high 
quality single-crystalline cores, but we also determined the growth direction of the 
nanowires post-measurement. The sample preparation for TEM investigation was 
performed using the dual-beam FIB system (FEI Quanta 3D FEG). The process for TEM 
sample preparation is introduced in Figure 4.3. Care was taken to ensure that only 
nanowires that survived on both the heating and sensing membranes after measurement 
were considered. However, the yield was low as the wires would break during transfer 
and/or measurement and hence TEM characterization could not be performed on every 
measured wire. Thermal conductivity values have only been reported for those wires that 
survived after measurement.  
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Figure	  4.3	  The	  SEM	  images	  of	  sample-‐preparation	  process	  for	  TEM	  investigation.	  
(a)  Thermal	  conductivity-‐measured	  Bi	  nanowire	  (dw	  =	  98nm)	  on	  the	  SiNx	  membrane.	  (b)	  
Deposition	  of	  Pt	  passivation	  layer	  using	  electron	  beam.	  (c)	  Cutting	  the	  membrane	  around	  

the	  TEM	  sample	  contained	  κ-‐measured	  Bi	  nanowires.	  (d)	  Attachment	  of	  TEM	  sample	  to	  TEM	  
grid	  using	  nano-‐manipulator.	  (e)	  and	  (f)	  The	  fabricated	  TEM	  sample	  contains	  the	  thermal-‐

conductivity-‐measured	  Bi	  nanowire.	  
 

Figure 4.4(a) shows thermal conductivities of individual Bi nanowires at 300 K with 
different diameters, revealing that the measured thermal conductivities have two separate 
trends with the diameter of Bi nanowires. From the HR-TEM investigation and the SAED 
patterns shown in Fig 4.4(c), the growth direction of NW 1 and NW 2 was found to be 
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[102] while that of NW 3, NW 4 and NW 5 was [110]. This is consistent with the result 
that as-grown Bi nanowires have two different growth directions of [110] and [102] , see 
reference [119]. The ring pattern in NW 1 and NW 2 could be attributed to the fact that Pt 
atoms go into surface of Bi nanowire during the process of TEM sample preparation. 
Gallo et al. [103] measured thermal conductivity of single crystal bulk Bi in directions 
parallel (κ∥) and perpendicular (κ⊥) to the trigonal axis and found anisotropy in the 
thermal conductivity. For example, at 300K the electronic part dominates thermal 
conductivity: in the trigonal direction, they measured κ∥,total to be 6 W/m·K, with κ∥,E 
about 5 W/m·K; in the perpendicular direction, κ⊥,total was 10 W/m·K, with κ⊥, E about 8 
W/m·K. In our case, the nanowire growth directions of [ 110 ] and [ 102 ] are 
perpendicular and tilted by an angle of 10.85 degrees to the trigonal axis, respectively, as 
shown in Figure 4.4(b). As shown in the Figure 4a, we also observed the anisotropy in 
thermal conductivities; the thermal conductivities of Bi nanowires with growth direction 
of [110] are about four-fold lower than those of Bi nanowires with growth direction 
[102]. We also included in Fig 4.4(a), the thermal conductivity of single crystalline Bi 
nanowire measured by Moore et al. [121] for reference. The orientation of their Bi 
nanowire is 120  which is also perpendicular to the trigonal axis, but is different from 
our growth direction. Further, it can be observed that for a particular growth direction, the 
thermal conductivity of Bi nanowires decreases with diameter at 300 K [125]. This 
diameter-dependent thermal conductivity of Bi nanowires suggests that there is enhanced 
boundary scattering of heat carriers, which are both electrons and phonons.  
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Figure	  4.4	  (a)	  Diameter-‐dependent	  thermal	  conductivity	  of	  Bi	  nanowires	  with	  different	  
growth	  direction	  of	  [102]	  (pink	  hexagon)	  and	  [110]	  (blue	  circle),	  respectively,	  at	  300	  K.	  The	  
dashed	  lines	  represent	  the	  linear	  fit	  of	  the	  measured	  thermal	  conductivity	  for	  each	  growth	  

direction	  of	  Bi	  nanowires.	  The	  thermal	  conductivity	  (green	  triangle)	  of	  Bi	  nanowire	  
perpendicular	  to	  the	  trigonal	  axis	  measured	  by	  Moore	  et	  al.	  is	  taken	  from	  Ref.	  [121].	  (b)An	  
illustrated	  representation	  of	  the	  growth	  direction	  of	  Bi	  nanowires	  grown	  by	  OFF-‐ON.	  (c)The	  
SAED	  patterns	  of	  the	  thermal	  conductivity-‐measured	  Bi	  nanowires.	  While	  the	  ED	  pattern	  
shows	  NW	  1	  and	  NW	  2	  was	  grown	  along	  the	  direction	  of	  is	  [102],	  NW	  3,	  NW	  4,	  and	  NW	  5	  

was	  grown	  along	  the	  direction	  of	  [110].	  
 

In bulk Bi, the thermal conductivity along the trigonal direction is much lower than that 
perpendicular to the trigonal direction and deviation in thermal conductivities in the two 
direction is only around 2 W/m·K at 300 K. In contrast, the deviation between [102] and 
[110] directions is around 7.0 W/m·K at 300 K for 100 nm diameter nanowires. Also, the 
thermal conductivity in Bi nanowires showed opposite trend compared with that in bulk, 
such as the thermal conductivity along [102], i.e., 10.85 degrees from the trigonal 
direction, is higher than that along [110], i.e., perpendicular to trigonal direction. This 
may be due to either of the following reasons; (i) There is no report on any transport 
property, let alone thermal conductivity of Bi in this off-axis, i.e., [102], direction. From 
the crystallographic point of view, a tilt of 10.85 degrees from the trigonal direction 
would cause a considerable difference in transport properties. For example, the nearest 
atom spacing in the [102] direction in Bismuth is ~ 24 Å, while that in the trigonal or 
[001] direction is ~ 5.7 Å. We speculate that this could result in a significant difference in 
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the mobility (due to band effective mass), Fermi vector, kF and phonon group velocity. 
(ii) The electron mobility of Bi nanowires in the trigonal [001] direction was observed to 
be a factor of around four times higher than that in the bulk Bi [119]. This enhanced 
mobility may be caused by the variation in electronic band structure due to the interface 
between the surface oxide and the Bi cores [126–128] or the reduced Fermi wavevector 
[119]. Also, Huber et al. [129] studied contribution of surface states to electronic 
conductivity in sub-50nm single crystalline Bi nanowire array in the trigonal direction 
and they observed that the surface electrons possess high mobility. The enhanced 
mobility could result in the increased electronic thermal conductivity. However, there is 
no report on mobility of [102] or [110] wires. Detailed experimental study of thermal 
conductivity as a function of magnetic field would be an exciting direction of proposed 
research. Also, in terms of the lattice thermal conductivity, there is a theoretical report 
that [130] a good bulk thermal conductor may not necessarily be a good thermal 
conductor for nanowires due to alternate contributions to phonon scattering [110]. In any 
cases, more experimental data would resolve this issue. 

For the Bi nanowires grown along the direction of [110] with dw = 117 nm, the corrected 
thermal conductivity was 2.7 ± 0.1 W/m·K at room temperature, which is higher than the 
electronic thermal conductivity, κE of ~ 2.5 W/m·K calculated from the Wiedemann-
Franz law using our recently reported electrical conductivity of Bi nanowires with similar 
diameters [111].  However, for the Bi nanowires grown along the direction of [110] with 
dw = 69 nm, the thermal conductivity is as low as 1.1 ± 0.2 W/m·K, which is lower than 
the κE of 1.6 W/m·K estimated from the Wiedemann-Franz law and electrical 
conductivity of Bi nanowires with similar diameters. Including the inaccurate estimation 
of diameter due to the native oxide and inevitable thermal contact resistance, the lower 
values of thermal conductivity could have large errors associated with them. Hence, the 
variability in the diameter trend should be taken as an additional source of error due to 
these uncertainties in the thermal conductivity measurement. In spite of considering this 
uncertainty in the thermal conductivity measurement, our result clearly shows the 
anisotropy and diameter-dependence of thermal conductivity in Bi nanowires for the first 
time. Gallo et. al. [103] showed that the total electronic contribution of thermal 
conductivity, κE for a semi-metal such as Bi can be expressed as κE = κe + κh + κhe where 
(1) κe is the ordinary thermal conductivity due to electrons only, (2) κh is the ordinary 
thermal conductivity due to holes only and (3) κhe is the thermal conductivity arising from 
bipolar diffusion due to the formation of electron-hole pairs. In this breakup, the electrons 
still dominate and the high electron mobility direction in bulk Bi corresponds to the low 
lattice thermal conductivity direction (both parallel to the trigonal axis). Using the 
electrical conductivity of a Bi nanowire with dw= 127 nm [111], the electronic thermal 
conductivity at room temperature can be estimated to be ~ 1.9 – 2.5 W/m·K (assuming 
L∥=2.3×10-8 W.Ω/K2 and L⊥=3.0×10-8 W·Ω/K2), although the growth direction of the 
nanowire was not known. In both cases, electronic contribution to the total thermal 
conductivity can be as high as 70 % of the total measured thermal conductivity. Thus, 
both anisotropy and boundary scattering have significant effects on the transport of the 
heat carriers (electrons, holes as well as phonons) in the nanowires, but their exact 
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mechanism is not clear. This finding motivates further thermal and electrical study on Bi 
nanowires with different crystal orientation.  

4.4 TEMPERATURE DEPENDENCE OF THERMAL 
CONDUCTIVITY FOR BISMUTH NANOWIRES 
 

Fig 4.5 shows temperature dependence of thermal conductivity for NW 1, NW 4, NW 5 
and a Bi nanowire with dw = 115 nm in the temperature range 40 − 300 K. The growth 
direction was confirmed to be [102], [110], and [110] for NW 1, 4, and 5 respectively, 
and is hypothesized to be [110] for the Bi nanowire with dw = 115 nm based on the 
anisotropic dependence of κ shown in Fig 4.4(a). The diameters of NW1, NW 4, and NW 
5 were 58 nm, 98 nm, and 327 nm, respectively. As shown in Fig 4.5, the thermal 
conductivities of the Bi nanowires increase monotonically with increasing temperature, 
but the actual temperature dependent behaviors are quite different: NW1 shows a slight 
increase in κ for T < 200 K but a much sharper one for T > 200 K; NW 4, on the other 
hand, shows a fairly weak temperature dependence for the entire temperature range. For 
comparison, the thermal conductivity of bulk Bi (inset of Fig 4.5) has a sharp peak at the 
temperature of 4 K, [103] presumably where phonon-phonon Umklapp scattering takes 
over, because phonon is the dominant heat carrier at low temperatures ( < 200 K) [120], 
and the Debye temperature of Bi (120 K) [131] is low. The fact that our measured κ 
monotonically increases with temperature from 40 − 300 K suggests that boundary 
scattering is significant for both electrons within the entire temperature range and 
phonons at lower temperature (T < ~ 200 K), as explained below. At higher temperature, 
electronic contribution dominates the total thermal conductivity and the lattice 
contribution is relatively small ( < 30 %). Also, the estimated mean free path of phonons 
is about 11 − 15 nm at 300 K; the effect of the boundary on phonon conductivity at this 
temperature is not significant. However, at lower temperatures the lattice contribution is 
dominant and the mean free paths are longer, hence the boundary can scatter phonons 
more effectively. For instance, below 200 K, lattice contribution is larger than 50 % of 
overall conductivity in bulk Bi and the boundary could affect the phonon mean free path 
substantially. Thus, one would expect the lattice contribution of a nanowire with a 
particular diameter to be a constant with temperature due to the boundary scattering since 
the lattice specific heat above the Debye temperature and the speed of sound are constant.  
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Figure	  4.5	  The	  temperature-‐dependent	  thermal	  conductivities	  of	  Bi	  nanowires	  with	  dw	  =	  58	  
nm,	  98	  nm,	  115	  nm,	  and	  327	  nm.	  The	  inset	  shows	  the	  temperature-‐dependent	  thermal	  

conductivity	  of	  bulk	  Bi	  (Ref.	  [103]).	  
 

The electronic contribution to the total thermal conductivity can be estimated from the 
modified Wiedemann-Franz law as discussed earlier. However, as an additional variable 
in the case of Bi nanowires, it has been predicted and experimentally verified [105], 
[107], [118], [125] that there is a semi-metallic to semiconducting transition when the 
diameter of nanowire is smaller than a certain transitional diameter. According to our 
electrical measurements of Bi nanowires, the transitional diameter occurs near 63 nm 
[111], hence NW1 should be semiconducting. For semiconducting wires, electrical 
conductivity, σ, increases significantly with temperature at T > 200 K, while it is almost 
flat below 200 K. Thus, below 200K, the interplay between the almost constant phonon 
contribution and increasing electronic contribution gives weakly linear temperature 
dependence for NW1. Higher than 200 K, the electronic contribution takes over and the 
temperature dependence is stronger. For the nanowires on the semi-metallic side of the 
transition (NWs 4, 5 and the 115nm NW), there is an overall linear temperature 
dependence due to the constant lattice contribution and an increasing electronic 
contribution. Therefore, we can attribute the temperature dependence of thermal 
conductivity to the strong boundary scattering for both electrons and phonons, which is 
consistent with the observed trend of diameter-dependence for thermal conductivity. The 
details of the temperature dependence, however, can vary for wires with different 
diameters and crystallographic orientations, and merits further investigation, such as 
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concurrent electrical and thermal measurements with quantitative modeling coupled with 
similar anisotropic considerations as we have done in this work. 

4.5 CONCLUSION 
 

In summary, we observed the anisotropy in thermal conductivity of single crystal Bi 
nanowires grown by OFF-ON method. The orientation dependent thermal conductivity of 
Bi nanowires was analyzed by HR-TEM and SAED investigations for thermal 
conductivity-measured Bi nanowires. The thermal conductivity of the Bi nanowires with 
growth direction of [110], which is perpendicular to the trigonal axis, is about four-fold 
lower than that of the Bi nanowires with growth direction of [102], which is 10.85 
degrees off to the trigonal axis. For a particular growth direction, the thermal 
conductivity of Bi nanowires scales down with diameter, which indicates the presence of 
strong boundary scattering of the heat carriers. Our results demonstrate that the growth 
direction plays a very significant role in charge and energy transport in Bi nanowires, 
which should be considered when designing thermoelectric devices based on Bi 
nanowires. Concurrent measurements of both thermal and electrical properties are 
required to further elucidate the behavior of heat carriers in these high quality single 
crystalline Bi nanowires. 
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CHAPTER 5 
 

TEMPERATURE GATED 
THERMAL RECTIFIER 
 

Heat flow control is essential for widespread applications of heating, cooling, energy 
conversion and utilization. Here we demonstrate the first observation of temperature-
gated thermal rectification in vanadium dioxide beams, in which an environment 
temperature actively modulates asymmetric heat flow. In this three terminal device, there 
are two switchable states, which can be accessed by global heating: “Rectifier” state and 
“Resistor” state. In the “Rectifier” state, up to 22% thermal rectification is observed. In 
the “Resistor” state, the thermal rectification is significantly suppressed (below 4%). This 
temperature-gated rectifier can have substantial implications ranging from autonomous 
thermal management of micro/nanoscale devices to thermal energy conversion and 
storage.  
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5.1 INTRODUCTION 
 

Heat and charge transport in condensed matter were first characterized about two 
centuries ago by the well-known Fourier’s [132] and Ohm’s [133] laws, respectively.  
The history of how the science of heat and charge transport has evolved, however, is very 
different. The discovery and purification of semiconductors, and the use of quantum 
mechanics to understand their electronic band structure led to the invention of many 
electronic devices such as diodes and transistors to control and manipulate charge 
transport.  Such devices have been widely deployed, and have touched almost all aspects 
of modern life in what we now call the information revolution.  Heat transport in 
condensed matter, in stark contrast, has remained in the realm of the Fourier law and its 
manipulation has been largely absent.  Yet, about 90 percent of the world’s energy 
utilization occurs through heating and cooling, making it one of the most critical aspects 
of any modern economy [134].  Hence, the ability to manipulate heat transport in ways 
akin to that for charge transport could potentially significantly impact utilization of 
energy resources.  

In condensed matter, heat is usually carried either by phonons or electrons. Metals are 
generally good conductors of heat through electrons. Manipulating heat in non-metals 
requires tuning of quantized lattice vibrations or phonons. A few theoretical proposals 
have been made envisioning tunability of heat flow in solid-state devices [135], [136] and 
electrically tuned solid-state thermal memory has recently been experimentally realized 
[137]. Perhaps the simplest manipulation of heat conduction is using a thermal rectifier 
[138], [139], in which the system thermal conductance depends on the direction of 
thermal gradient. The level of thermal rectification is commonly [138] defined as the 
following: 

 
R =

G H −GL
GL

 
 

(5.1) 

 
Here GH and GL are the thermal conductances of the sample in the directions of higher 
and lower heat flows under the same temperature difference, respectively. Several 
approaches have been theorized for achieving thermal rectification, such as using 
materials with opposite trends in thermal conductivity as a function of temperature [140],  
or asymmetrical phonon density of states in graphene nanoribbons [141]. The interplay 
between electrons and phonons can potentially have an asymmetry when the direction of 
flow is reversed.    

The rapid advancement of nanofabrication has enabled the synthesis of nanostructures 
with a variety of materials for both novel applications[36], [65], [142–144] and to explore 
condensed matter science [145]. Specifically, individual carbon or boron nitride 
nanotubes with asymmetric mass loading were reported to have thermal rectification of 
about 2-7% [138]. However, there has been no further experimental advancement since 
then.  



 
 

99 

Here we demonstrate the first temperature-gated thermal rectifier devices using VO2 
beams. Thermal rectification in the beams can be switched on and off by changing the 
device temperature. Unprecedented thermal rectification up to 22% is observed below 
340 K. Once the devices are heated above 340 K, they can be switched off, where 
thermal rectification is greatly suppressed (<4%). A visual representation of the device 
functionality is shown below in Fig 5.1. 

 

Figure	  5.1	  Symbolic	  diagram	  of	  temperature-‐gated	  thermal	  rectifier.	  In	  the	  “Rectification”	  or	  
“on”	  state,	  thermal	  flow	  depends	  on	  the	  direction	  of	  applied	  thermal	  gradient,	  representing	  
strong	  thermal	  rectification.	  In	  the	  “Resistor”	  or	  “off”	  state,	  thermal	  flow	  does	  not	  depend	  on	  
the	  sign	  of	  thermal	  gradient,	  essentially	  the	  behavior	  of	  a	  resistor.	  	  The	  on/off	  state	  can	  be	  

controlled	  by	  a	  global	  temperature	  (TG)	  	  

5.2 MATERIAL CHOICE AND CHARACTERIZATION 
 

Vanadium Dioxide is a correlated electron material system that undergoes an insulator-
metal phase transition at ~68°C.  This is coupled with a structural phase transition at the 
same temperature, where the insulating monoclinic phase gives way to a metallic rutile 
phase.  The phase transition is known to be first-order and occurs abruptly at the 
transition temperature, and can also be visualized under an optical microscope as the 
metallic and insulating phases exhibit different contrast. The structural phase transition in 
the lattice structure is shown below in Fig 5.2. 
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Figure	  5.2	  Structural	  phase	  transition	  of	  VO2	  at	  the	  transition	  temperature	  from	  the	  (a)	  
Insulating	  to	  the	  (b)	  Metallic	  phase.	  Under	  no	  stress,	  this	  transition	  happens	  at	  ~68°C,	  i.e.,	  
340K,	  and	  the	  Vanadium	  bond	  angles	  change	  from	  a	  monoclinic	  to	  a	  rutile	  lattice	  structure.	  

 

Single crystalline VO2 
 beams have been investigated extensively as a unique platform for 

studying Mott metal-insulator transitions which can be induced not only by temperature, 
but also by strain and light [146–150].  Thin films of polycrystalline VO2 have shown 
that the insulator to metal transition occurs via nucleation of isolated nanoscale puddles 
of metallic phases in a background of the insulator phase, which then grow and merge as 
the transition progresses [151]. In addition, it has been found that the VnO2n-1 family has a 
large range of transition temperatures (from 135K in V5O9, to 340K in VO2) [152]. 
Therefore, a mixed phase of different members of VnO2n-1 family can cause the co-
existence of a large number of metal-insulator interfaces over a wide temperature range 
(135K to 340K). Once the temperature is above 340K, or below 135K, these interfaces 
vanish.  The thermal conductivity of poly-crystalline stoichiometric VO2 films was 
studied close to ~340K and increased by as much as 60% due to the insulator to metal 
phase transition [62].  The VO2 beams used in this study were synthesized using a 
modified vapor transport method [153], and carefully examined by electrical transport 
and Raman spectroscopy (see Fig 5.3 below). Bulk VO2 powder was placed in a quartz 
boat in the center of a horizontal tube furnace. The typical growth temperature was 1000 
ºC with Ar used as the carrier gas. The VO2 beams were collected on a Si substrate with a 
500nm thick thermally grown surface oxide downstream from the source boat. The 
catalyst, which determines the size of the beam, can be partially diffused away by tuning 
the pressure and temperature to induce tapered or asymmetrical beam growth.  The 
Raman Spectrograph taken at room temperature shows peaks corresponding to crystal 
symmetries of the monoclinic insulating phase.   
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Figure	  5.3	  Raman	  spectrum	  of	  a	  uniform	  VO2	  beam	  at	  300K.	  Raman	  peaks	  at	  199,	  225,	  305,	  
392,	  500	  and	  618	  cm−1	  correspond	  to	  Ag	  symmetry.	  

 

5.3 MEASUREMENT OF THERMAL RECTIFICATION 
 

The strength of our measurement platform described in detail in Chapter 2 allows us to 
then measure directional thermal transport through a suspended VO2 beam in two 
different directions. Then, Equation (5.1) can be used to determine the rectification for a 
single beam. In order to do this, an individual 3-5 µm long VO2 beam is transferred to the 
silicon-based microdevice so as to form a bridge between two parallel, suspended SiNX 
membranes, each consisting of micro-fabricated symmetric resistive Pt coils, for thermal 
and electrical transport measurements [52] (Fig 5.4(a)). The Pt coils are used as both 
heaters and resistive thermometers. To make good electrical and thermal contact, a Pt/C 
composite was deposited symmetrically on both ends using a Focused Ion Beam. 
Therefore, both thermal conductance and electrical conductance can be measured at the 
same temperature. A resistive heater is used to heat the whole Si chip uniformly inside a 
cryostat to control the global device temperature, TG. Again, the measurement is 
performed in a cryostat at ~2 µTorr to prevent conduction and convection losses. 
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Figure	  5.4	  (a)	  Optical	  microscope	  image	  of	  an	  asymmetrical	  VO2	  beam	  on	  suspended	  
membranes	  for	  thermal	  conductance	  measurement.	  (b)	  Scanning	  electron	  microscopy	  (SEM)	  

image	  of	  an	  asymmetrical	  VO2	  beam.	  The	  VO2	  beams	  used	  in	  this	  study	  have	  a	  uniform	  
thickness	  (typically	  500nm-‐	  1µm),	  with	  one	  end	  of	  narrow	  width	  (300nm-‐	  900nm)	  and	  the	  
other	  end	  of	  wide	  width	  (600nm	  -‐	  2µm).	  	  The	  heat	  flow	  through	  the	  beam	  (Q)	  in	  either	  

direction	  denoted	  by	  the	  arrows	  is	  accurately	  measured	  while	  the	  suspended	  platforms	  are	  
maintained	  as	  isotherms	  at	  hot	  and	  cold	  temperatures,	  Th	  and	  Ts	  respectively	  

 
5.3.1 The Gate Temperature (TG) adjustment 

It is important to note that we utilized the temperature-drive phase transition in VO2, 
which involves thermal hysteresis.  Therefore, a change in the global temperature, TG that 
functions as the thermal gate, can affect the measurement of thermal properties.   The 
global temperature can be adjusted in multiple ways.  First, while keeping the direction of 
heat flow constant, the conductance in that direction can be measured for all gate 
temperatures from 300-380K, ie. traversing the phase transition at around 340K. Then the 
direction of heat flow can be swapped and the conductance in the reverse direction can be 
measured again at all temperatures between 380-300K.  While most convenient, this 
requires the beam to undergo a temperature cycle and hysteresis before properties in the 
reverse direction can be measured.  Hence, this approach was not pursued. 

To circumvent this problem, the following approach was used.  At each gate temperature, 
TG, the conductance is measured in both directions of the beam by switching the heating 
and sensing membranes. This is the most direct way of observing rectification as the 
conductance in both directions is measured before TG is changed.  Since the maximum 
ΔT < 2 K, we believe that this will have marginal hysteretic effect on our conductance 
measurements.  However, in order to accurately estimate the temperature change on the 
heating and sensing sides , the platinum-resistance thermometer (PRT) h sT T TΔ = Δ −Δ
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needs to be calibrated.  At low temperatures, the change in resistance as a function of 
temperature is non-linear and introduces significant error in the measurement.  To 
address this issue, the following modification was then used.   

The PRT was calibrated by measuring the local change in resistance around a particular 
gate temperature. For example, to get an accurate value of the TCR (Temperature 
Coefficient of Resistivity) of the Platinum film used for temperature measurement at 
200K, four-point resistance measurement on the heating and sensing sides was done at 
195K, 198K, 200K, 202K and 205K. Then, the TCR obtained from the localized 
calibration can be utilized to accurately calculate the temperature. Rectification is 
observed with all three approaches described above, while the third approach 
unequivocally shows convergence of the conductance in both directions at low 
temperatures. 

5.3.2 Temperature Gated Thermal Rectification Results 

Fig 5.5(a) shows measured heat flow, Q, and the temperature difference, ΔT, across a 
tapered VO2 beam at TG of 300K below the phase transition temperature of 340 K. The 
heat flow, Q, increases linearly with ΔT (<1K). However, the thermal conductance, G = 
Q/ΔT, or the slope, differs depending on the direction of heat flow. The thermal 
conductance of the tapered beam when heat is flowing from the narrow to the broader 
side (61 ± 2.7 nW/K) is significantly smaller than that in the other direction (73 ± 3.3 
nW/K). This represents a 22 ± 7.8% thermal rectification, which is the highest ever 
reported to the best of our knowledge, with a proposed nanostructure-induced 
mechanism. Note that upto 75% rectification was observed in a Quartz-Graphite structure 
purely due to different temperature dependence of the constituent elements [154] . Also 
shown in Fig 5.5(b) is the δQ, which is the deviation of the heat flow in one direction, Q, 
from the extrapolated linear curve representing the conductance in the opposite direction. 
Figs 5.5(c) and 5.5(d) show similar plots for the same VO2 beam at TG = 350 K, which is 
higher than the phase transition temperature where the VO2 beam is in the metallic phase.  
In contrast to Figs 5.5(a) and 5.5(b), it is clear that no rectification is observed and the 
thermal conductance in both directions increases to 98 ± 4.4 nW/K.  
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Figure	  5.5	  (a)	  and	  (c)	  heat	  flow	  (Q)	  as	  a	  function	  of	  temperature	  difference	  ΔT	  across	  the	  
VO2	  beams	  at	  300K	  and	  350K,	  respectively.	  Different	  signs	  (+)	  and	  (-‐)	  of	  Q	  represent	  

different	  directions	  of	  heat	  transfer.	  (b)	  and	  (d)	  heat	  flow	  deviation	  (δQ)	  as	  a	  function	  of	  
temperature	  difference	  across	  the	  VO2	  beams	  at	  300K	  and	  350K,	  respectively.	  

 
The same plots of Q and δQ at 300 K of an untapered VO2 beam show that there is no 
rectification (Fig 5.6 (a-d)). 

 

Figure	  5.6	  	  (a)	  and	  (c)	  heat	  flow	  (Q)	  as	  a	  function	  of	  temperature	  difference	  (ΔT)	  across	  the	  
uniform	  VO2	  beams	  at	  300K	  and	  360K	  respectively.	  Different	  signs	  (+)	  and	  (-‐)	  of	  thermal	  
power	  (Q)	  represent	  different	  directions	  of	  heat	  transfer.	  (b)	  and	  (d)	  heat	  flow	  deviation	  
(δQ)	  from	  linear	  fit	  as	  a	  function	  of	  temperature	  difference	  (ΔT)	  across	  the	  VO2	  beams	  at	  

300K	  and	  360K	  correspondingly.	  	  
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The thermal rectifications of five asymmetrical VO2 beams were found to be around 
15%, when TG < 340K, and reduced to below 4% and within the measurement noise for 
TG > 340K (Table 5.1). 

  300K 350K 

No. G+ 
(nW/K) G- (nW/K) R (%) G+ 

(nW/K) G- (nW/K) R (%) 

I 73±3.3 60±2.7 22±7.8% 98±4.6 98±4.6 0±6.6% 
II 144±7.2 123±6.1 17±8.3% 165±8.2 160±8.0 3±7.3% 
III 117±5.8 103±5.2 13±8.0% 118±5.9 114±5.7 4±7.3% 
IV 191±9.6 169±8.4 13±8.0% 181±9.0 179±9.0 1±7.2% 
V 56±4.6 48±3.9 17±13% 53±1.4 49±1.3 8±4.0% 
VI 175±8.8 156±7.8 12±7.9% 178±8.9 172±8.6 3±7.3%  
Table	  5.1	  Thermal	  conductance	  and	  thermal	  rectification	  of	  five	  different	  VO2	  beams	  

 
5.3.2 Effect of Gate Temperature on Rectification 

Since the metal and insulating phases of VO2 depend strongly on the gate temperature, a 
temperature dependent measurement would shed more light on the possible mechanisms 
causing heat to rectify. Fig 5.7(a) shows the thermal conductance in two directions as a 
function of global temperature for beams with and without rectification. It is observed 
that the degree of rectification, R, (black open circles) peaks around 300-320K, lower 
than the phase transition of 340K and decreases as the temperature is increased or 
decreased away from the transition. Above the VO2 insulator-metal transition 
temperature (~340K), the electronic density of states at the Fermi Level increase 
significantly and electrons start contributing to the thermal conductance, which explains a 
sudden increase. This is also consistent with electrical resistance measurements (see Fig 
5.7(b)), which show a 2-orders of magnitude drop at 340K indicating the characteristic 
insulator-to-metal phase transition, consistent with reports in literature for the electronic 
VO2 phase transition [149].  Below 135K, the electronic contribution is negligible and 
phonons dominate heat conduction. In this temperature range, we do not observe any 
rectification as well.  The phonon mean free paths are limited by scattering from either 
defects, interfaces or boundaries, and the thermal conductance increases with temperature 
due to increase in phonon population.  
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Figure	  5.7	  (a)	  Thermal	  conductance	  of	  an	  asymmetrical	  VO2	  	  beam	  as	  a	  function	  of	  global	  
temperatures	  along	  two	  opposite	  directions.	  The	  thermal	  conductance	  is	  found	  to	  be	  
measurably	  higher	  when	  heat	  flows	  from	  the	  wide	  end	  to	  the	  narrow	  end.	  At	  low	  

temperatures,	  the	  rectification	  disappears	  and	  the	  conductance	  from	  either	  end	  is	  identical;	  
this	  is	  expected	  as	  the	  whole	  wire	  is	  in	  the	  insulating	  phase	  and	  should	  behave	  as	  a	  normal	  
dielectric.	  (b)	  the	  electrical	  resistance	  of	  VO2	  beam	  as	  a	  function	  of	  global	  temperature.	  The	  
dotted	  line	  represents	  saturation	  of	  measured	  voltage	  for	  applied	  current	  (10	  nA);	  the	  

resistance	  could	  not	  be	  measured	  below	  180K.	  The	  arrows	  in	  Figure	  2	  denote	  the	  direction	  
of	  heat	  flow	  in	  which	  high	  (green)	  and	  low	  (red)	  thermal	  conductance	  was	  observed.	  
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5.4 DISCUSSION AND ANALYSIS 
 

It has been proposed that an asymmetric geometry or roughness may cause thermal 
rectification in materials when phonons dominate the heat conduction and the phonon 
mean free path is comparable to the characteristic length of the structure [135]. In order 
to eliminate this possibility, let us estimate the phonon mean free path in single crystal 
VO2.  A kinetic theory expression for the average phonon mean free path is: Λ = 3k cv .  

In the calculation, k is the thermal conductivity of VO2 beam, the volumetric heat 
capacity c is taken to be the bulk value of VO2, and v is taken to be the speed of sound. In 
the case of our VO2 beam, Λ is estimated to be on the order of 1 nm at 300K.  It is noted 
that the phonon mean free path based on kinetic theory usually leads to an 
underestimation of the mean free path for those phonons that are actually carrying the 
heat primarily for three reasons: 

1. The average phonon group velocity is smaller than the speed of sound 
2. Optical phonons contribute to the specific heat but little to heat transport 
3. Phonon scattering is highly frequency dependent. 

 
However, considering almost 3 orders of difference between the estimated phonon mean 
free path and the lateral length scale of our beams, it is believed that thermal rectification 
directly due to geometric effect that requires boundary scattering to be dominant is very 
unlikely. 

Below 50 K, the phonon mean free path should increase by at least one order of 
magnitude. Therefore, any thermal rectification caused by asymmetrical geometry should 
be a lot more significant at lower temperature, which is not observed in Figure 5.7(a). So 
it is not possible that uneven phonon heat conduction due to asymmetrical geometry 
could cause the observed large thermal rectification. 

It is seen that the metal-insulator phase transition in VO2 is indeed essential for large 
thermal rectification observed here. Previous work has shown the co-existence of metallic 
and insulating phases within a single beam during phase transition [146], [147], [149].  
To the best of our knowledge, except for the very early work in CuO-Cu system [155], 
thermal rectification due to the co-existence of metallic and insulating phases has not 
been observed experimentally. A recent theoretical study estimated the thermal resistance 
between a metal and an insulator by employing the two-temperature model to account for 
the lack of equilibrium between electrons and phonons near a metal-insulator interface 
[156] while maintaining same lattice temperature. It has been further theoretically 
predicted that thermal rectification could occur if metallic and insulating phases co-exist 
in a material system [139]. The underlying principle is the asymmetry between the energy 
transfer rate between electrons and phonons, when the electrons and phonons are not in 
equilibrium in a metal close to the interface. To observe significant thermal rectification 
in a metal-insulator system, the thermal resistance due to electron-phonon scattering 
should dominate over that from phonon-phonon coupling. Indeed, in the vanadium oxide 
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system, it was reported that a small 1% lattice distortion [149] in the rutile and 
monoclinic phases should ensure good acoustic match to reduce thermal resistance from 
phonon-phonon coupling. Therefore, it is possible that the electron-phonon scattering 
may be dominant for the contact resistance at metal-insulator interfaces in VO2 beams, 
leading to measurable thermal rectification due to the abundance co-existing metallic and 
insulating phases.  

It is intriguing that thermal rectification was observed not only near phase transition 
temperature 340K, but also over large span of ~100K below, provoking the question as to 
the role of the taper of the VO2 beams. Even though the VO2 beams show characteristic 
electronic transition temperature (340K) and Raman spectrum (supplementary materials), 
it has been known that vanadium oxide can form Magnéli phases with a deficiency of 
oxygen, given by the general formula VnO2n-1. These are crystallographic shear 
compounds with a rutile VO2 backbone [157]. The role of stoichiometry in VnO2n-1 = 
V2O3 + (n-2)VO2 single crystals has been studied in meticulous details [152].  As 
observed in Figure 4A, the ‘on’ state of rectification exists between 250K and 340K, 
where the V2O3 shear planes would be metallic and the VO2 matrix would be insulating. 
Therefore, a small variation in stoichiometry of vanadium oxide can cause the existence 
of metal-insulator interfaces over a very large range of temperature [152]. As shown in 
Figure 5.7(a), between 250 K and 340K where rectification exists, the conductance 
decreases with increasing temperatures. It can be caused by phonon-phonon Umklapp 
scattering, but can also be attributed to the appearance of interfaces created by the 
formation and co-existence of multiple phases of vanadium oxide that may be not 
electronically connected, but impede phonons due to interface scattering.  We have 
indeed found the signature of mixed vanadium oxide phases in tapered beams using 
Auger Electron Spectroscopy (AES) seen below in Fig 5.8.   
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Figure	  5.8	  (a)	  Scanning	  Electron	  Microscopy	  (SEM)	  image	  of	  a	  uniform	  VO2	  beam,	  with	  
colored	  symbols	  represent	  locations	  used	  (~10nm	  resolution)	  for	  stoichiometry	  analysis.	  (b)	  
Auger	  Electron	  Spectra	  for	  the	  uniform	  VO2	  beam,	  with	  different	  colors	  representing	  the	  
places	  labeled	  in	  (a).	  (c)	  Scanning	  Electron	  Microscopy	  (SEM)	  image	  of	  an	  asymmetric	  VO2	  
beam,	  with	  colored	  symbols	  represent	  places	  for	  stoichiometry	  analysis.	  (d)	  Auger	  Electron	  
Spectra	  for	  the	  asymmetric	  VO2	  beam,	  with	  different	  colors	  represent	  the	  places	  labeled	  in	  

(c).	  	  	  
 

It is observed that the oxygen composition on the surface of the uniform beam is higher 
than 66.7% (as in VO2). This oxygen-rich surface can be attributed to the general oxygen 
rich environment, as the beams are exposed to air during storage. It has been 
demonstrated in literature that exposing bulk VO2 single crystals to an oxygen 
environment can produce surface oxidation tending towards V2O5 (71.4% oxygen) [158].  
Such a study has not been performed on VO2 beams grown using our techniques, but 
given the larger surface-to-volume ratio of such nano/micro scale beams, it is highly 
likely that the surface of the VO2 beams in our study is oxygen-rich. Interestingly, it is 
observed that the oxygen composition on the surface of an asymmetric beam is lower 
than 66.7% (Fig  5.8(d)), despite the general oxygen rich environment. As discussed 
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earlier, the phase transition temperature is very sensitive to the stoichiometry of VnO2n-1. 
Hence, we expect these oxygen-deficient spots to remain in a metallic phase over a large 
range of temperatures (down to 135K for V2O3) [157], [159].  

Also it is noteworthy that recent work shows that the phase transition also depends on the 
stress fields within single VO2 beams [149].  It is likely that a taper created during beam 
growth may lead to stress concentrations which could potentially produce geometrical 
and size distributions of metallic and insulating domains and interfaces near the taper, 
which could amplify the rectification achieved by single interfaces. Similar distributions 
were previous reported by bending the beam [146]. Hence, while the metal-insulator 
phase transition is critical to thermal rectification, the taper and composition variation 
may also contribute to the effect due to unique distributions of metal-insulator domains. 
Over the last few decades, while tremendous efforts has been made in understanding the 
complexity of the metal-insulator phase transition in the family of vanadium oxide, the 
underlying physics still remains largely illusive [160]. Its impact on thermal transport is 
yet to be fully understood. 

5.5 CONCLUSION 
 
In summary, we report an unprecedented large thermal rectification up to 22% in VO2 
beams that is gated by environmental temperature. Such a three terminal device exhibits 
an “on” state over large range of temperature (TG = 250-340 K) and “off” state (TG < 250 
K or TG> 340K).  Hence, by changing temperature, one can switch the rectification, much 
like a gate voltage switches a thyristor between two states of electrical conductance. Such 
novel all-thermal devices may spur interesting applications in autonomous thermal flow 
control and efficient energy harvesting. 
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CHAPTER 6 
 

CONCLUSIONS AND OUTLOOK 
 

This thesis describes the use of a microfabricated platform to measure thermal 
conductivity and establish a one-one relation between the characterized structure and the 
thermal properties of three different material systems. In Chapter 1 we provide an 
introduction to phonons and how heat travels in dielectric solids. In Chapter 2 we 
describe the details of measurement of thermal conductivity using the platform and the 
limits that define accurate estimation of nanowire thermal properties. State-of-the-art 
measurements ensure a sensitivity down to ~4 pW with µK temperature resolution.  In 
our system, we can measure thermal conductance down to ~1 nW/K. On the other hand, 
the limit to measuring larger conductances lies in the contribution due to thermal contact 
resistance, which is around 1-15 K/µW depending on the geometry of the system being 
measured.  Knowing these limits can ensure accurate measurement of thermal 
conductivity of different material systems.  In the subsequent chapters, the thesis 
describes three novel materials, each exhibiting unique thermal properties.   

In Chapter 3, we’ve carefully studied the effect of morphology on the thermal 
conductivity of rough Silicon Nanowires. Scanning Transmission Electron Microscopy 
(STEM), TEM and three-dimensional tomography were used to characterize single-
crystalline nanowires roughened with three separate roughening chemistries. Key 
structural details such as porosity, non-circular cross-section, extended defects, necks, 
residual metal particles and amorphous native oxide regions were identified and 
incorporated in the geometrical reconstruction of the nanowires.  Thermal conductivity of 
rough single nanowires was then measured on those exact same nanowires whose 
structure was characterized with electron microscopy.  A correlation that related a 
spectrally determined surface roughness parameter, α p to the measured thermal 
conductivity was found.  When α p is larger, the nanowire is rougher and the thermal 
conductivity is lower. α p  captures the amplitude of the rough surface of the nanowire 
where the roughness matches the dominant wavelength of phonons contributing to 
thermal conductivity (λ ~1−100nm at 300K). 

In Chapter 4, we study the anisotropy of thermal transport in Bismuth nanowires.  Here 
we move from a semiconductor (Silicon) in Chapter 3, to a semimetal, where both 
electrons and phonons contribute to thermal conductivity. We find that both carriers have 
their mean free path restricted by diameter. More interestingly, the thermal conductivity 
depends on crystal direction. This can occur due to a difference in group velocity in 
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different crystal directions.  Again, the thermal measurement platform provides a 
convenient tool to characterize the crystal growth direction of different nanowires with 
Selected Area Diffraction (SAD) and link it with changes in thermal conductivity.  

Finally, in Chapter 5, we study for the first time, the thermal properties of a single crystal 
of correlated electron material, Vanadium Dioxide. While this interesting material 
undergoes a structural and electronic phase transition at ~68°C, how this transition affects 
phonons has not been studied so far. We find that imperfect growth of beams of the 
Vanadium-Oxide family, VnO2n-1 result in the possibility of many metal-insulator 
interfaces co-existing. These manifest in asymmetric thermal transport across the VOx 
beam, which switches off at high (>68°C) and low (<-140°C) temperatures, but provides 
thermal rectification of up to 22% in the intermediate temperature range. Again, the 
measurement platform comes in handy, as we can perform simultaneous electrical and 
thermal measurements on the VO2 beams, while the same samples can be used for TEM 
as well as Auger Spectroscopy.  

Overall, we’ve strived to utilize the thermal measurement platform to study properties of 
different materials system, gaining unique understanding on their structure and 
morphology and hence advancing the field of thermal transport in nanostructures. 

Considering the bigger picture, heat plays an ever-more important role in the world today. 
65% of all energy conversion losses occur in the form of heat [161]. Hence, designing 
and tailoring heat is an important challenge that engineers and scientists face.  
Nanostructuring has provided a new tool to experiment with in the past couple of decades, 
and has shown promising developments, as outlined briefly in Chapter 1 and shown in 
detail in the subsequent chapters for three different material systems.  However, the next 
new wave of discoveries surely lies in understanding the wave nature of phonons.  

High quality nanostructures can now be made that have their critical length scales close 
to the dominant phonon wavelength contributing to thermal conductivity, such as 
epitaxially grown superlattices, advanced nanofabricated structures and nanowires.  
Studying the thermal properties of such nanostructures is challenging on two fronts: (1) 
design and preparation of sub-10nm samples for thermal studies, and (2) exploring the 
limits of sensitivity of thermal measurements in order to probe their properties. The 
broadband nature of phonons is an impediment to clearly observing wavelike behavior of 
phonons, as the phonons interact with each other in an energy bandwidth given by ~kBT. 
Of course in the perfectly harmonic approximation, there are no interactions between 
phonons. Waves travel freely without attenuation and have infinite mean free paths, but 
this is far from the actual scenario. In reality, interactions in dielectrics with low defect 
density can be restricted to normal and umklapp scattering.  Normal scattering conserves 
phonon momentum; umklapp scattering changes total phonon momentum. Hence, in the 
regime of normal scattering, phases of the phonon waves can possibly be preserved.  
Then, by introducing nanoparticles or rationally designed surfaces, coherent scattering of 
the phonons can be induced.  The effects of these on thermal conductivity is unexplored 
territory and can lead to phenomena such as time reversal, multiple coherent 
backscattering and Anderson localization.  Such experiments have been performed on 
Bose Einstein Condensates (matter waves) [162], electrons [163], [164], photons [165], 
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elastic waves [166], acoustics[167], [168], and even water waves [169]! Probing these 
wave phenomena, of course, is a formidable task. Far from experimental realization, such 
wave phenomenon has received little formal theoretical treatment for phonons [170].  

Further, while steady state thermal conductivity measurements on nanostructures are state 
of the art, transient measurements need to be designed to probe the time scales of 
scattering of thermal phonons. This thesis emphasizes the 1-1 correlation between solid-
state structure and thermal properties. In-situ experiments where the transient 
measurements of nanostructures can be probed while observing changes in structure 
and/or controlling scattering rates (as a function of temperature, for example) can be 
designed and will further help in understand the transport of phonons in solid state 
systems.  
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