Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Rumen microbial degradation of bromoform from red seaweed (Asparagopsis taxiformis) and the impact on rumen fermentation and methanogenic archaea.

Abstract

BACKGROUND: The red macroalgae Asparagopsis is an effective methanogenesis inhibitor due to the presence of halogenated methane (CH4) analogues, primarily bromoform (CHBr3). This study aimed to investigate the degradation process of CHBr3 from A. taxiformis in the rumen and whether this process is diet-dependent. An in vitro batch culture system was used according to a 2 × 2 factorial design, assessing two A. taxiformis inclusion rates [0 (CTL) and 2% DM diet (AT)] and two diets [high-concentrate (HC) and high-forage diet (HF)]. Incubations lasted for 72 h and samples of headspace and fermentation liquid were taken at 0, 0.5, 1, 3, 6, 8, 12, 16, 24, 48 and 72 h to assess the pattern of degradation of CHBr3 into dibromomethane (CH2Br2) and fermentation parameters. Additionally, an in vitro experiment with pure cultures of seven methanogens strains (Methanobrevibacter smithii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, Methanosarcina barkeri, Methanobrevibacter millerae, Methanothermobacter wolfei and Methanobacterium mobile) was conducted to test the effects of increasing concentrations of CHBr3 (0.4, 2, 10 and 50 µmol/L). RESULTS: The addition of AT significantly decreased CH4 production (P = 0.002) and the acetate:propionate ratio (P = 0.003) during a 72-h incubation. The concentrations of CHBr3 showed a rapid decrease with nearly 90% degraded within the first 3 h of incubation. On the contrary, CH2Br2 concentration quickly increased during the first 6 h and then gradually decreased towards the end of the incubation. Neither CHBr3 degradation nor CH2Br2 synthesis were affected by the type of diet used as substrate, suggesting that the fermentation rate is not a driving factor involved in CHBr3 degradation. The in vitro culture of methanogens showed a dose-response effect of CHBr3 by inhibiting the growth of M. smithii, M. ruminantium, M. stadtmanae, M. barkeri, M. millerae, M. wolfei, and M. mobile. CONCLUSIONS: The present work demonstrated that CHBr3 from A. taxiformis is quickly degraded to CH2Br2 in the rumen and that the fermentation rate promoted by different diets is not a driving factor involved in CHBr3 degradation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View