Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Concepts for structurally robust materials that combine low thermal expansion with high stiffness

Abstract

A family of robust stretch-dominated bimaterial lattices is introduced which combines low (or zero) thermal expansion with high stiffness, structural robustness over wide temperature ranges and manufacturing facility. This combination of properties is unavailable through any other material solution. The concept uses two constituents configured as adjoining sub-lattices. It accommodates the thermal expansion through rotation of the members of one sub-lattice. Moreover, the lattice exhibits large stiffness to weight because it is fully triangulated and does not rely on rotational resistance at the joints for structural rigidity. A wide range of constituents can be used to build the new lattices enabling many desirable properties to be incorporated, especially high strength and toughness. Examples of both planar and volumetric lattices are presented, and their thermo-mechanical properties derived. The results are verified by conducting experiments and finite element simulations on a lattice fabricated using aluminium and titanium alloy constituents. (C) 2007 Elsevier Ltd. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View