Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Indirect assessment of biomass accumulation in a wastewater-based Chlorella vulgaris photobioreactor by pH variation


Algae bloom in coastal waters is partly supported by residual nutrients in treated wastewater (WW) released from coastally located treatment plants. In response, a Chlorella vulgaris-based photobioreactor was recently proposed for lowering nutrient levels in WW prior to release. However, the solution requires maintaining biomass accumulation to within a photobioreactor capacity for optimum operation. For high density Chlorella vulgaris suspensions, this is easily done by monitoring turbidity increase, a property directly related to biomass accumulation. For low density suspensions however, direct turbidity measurement would require a cumbersome process of concentrating large volumes of Chlorella vulgaris suspensions. Here, we demonstrate that by measuring pH of the suspensions, turbidity (T) can be estimated indirectly by the following wastewater-dependent expression: pH = aT + pH0, hence avoiding the need to concentrate large volumes. The term pH0 is the initial pH of the suspensions and a, a wastewater-dependent constant, can be computed independently from a = - 0.0061*pH0 + 0.052. In the event %WW is unknown, the following wastewater-independent Gaussian expression can be used to estimate T: pH = 8.71*exp(- [(T - 250)2]/[2*1.26E05]). These three equations should offer an avenue for monitoring the turbidity of dilute Chlorella vulgaris suspensions in large, stagnant municipal Chlorella vulgaris-based wastewater treatment system via pH measurements.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View