- Main
Structural Drift: The Population Dynamics of Sequential Learning
- Crutchfield, James P;
- Whalen, Sean
- Editor(s): Bergstrom, Carl T
Published Web Location
https://doi.org/10.1371/journal.pcbi.1002510Abstract
We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream "teacher" and then pass samples from the model to their downstream "student". It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-