- Main
Behavioral Timescale Cooperativity and Competitive Synaptic Interactions Regulate the Induction of Complex Spike Burst-Dependent Long-Term Potentiation.
Published Web Location
https://doi.org/10.1523/jneurosci.1950-21.2022Abstract
Although Hebbian LTP has an important role in memory formation, the properties of Hebbian LTP cannot fully account for, and in some cases seem incompatible with, fundamental properties of associative learning. Importantly, findings from computational and neurophysiological studies suggest that burst-dependent forms of plasticity, where dendritic spikes and bursts of action potentials provide the postsynaptic depolarization needed for LTP induction, may overcome some of the limitations of conventional Hebbian LTP. Thus, I investigated how excitatory synapses onto CA1 pyramidal cells interact during the induction of complex spike (CS) burst-dependent LTP in hippocampal slices from male mice. Consistent with previous findings, theta-frequency trains of synaptic stimulation induce a Hebbian form of plasticity where postsynaptic CS bursts provide the depolarization needed for NMDAR activation and LTP induction. However, in contrast to conventional Hebbian plasticity, where cooperative LTP induction requires coactivation of synapses on a timescale of tens of milliseconds, cooperative interactions between synapses activated several seconds apart can induce CS burst-dependent LTP. A novel, retroactive form of heterosynaptic plasticity, where activation of one group of synapses triggers LTP induction at other synapses that were active seconds earlier, also contributes to cooperativity in CS burst-dependent LTP. Moreover, competitive synaptic interactions that emerge during prolonged bouts of postsynaptic CS bursting potently regulate CS burst-dependent LTP. Together, the unusual properties of synaptic cooperativity and competition in CS burst-dependent LTP enable Hebbian synapses to operate and interact on behavioral timescales.SIGNIFICANCE STATEMENT While EPSP-evoked complex spike (CS) bursting induces LTP at excitatory synapses onto hippocampal CA1 pyramidal cells, the properties of synaptic interactions during the induction of CS burst-dependent LTP have not been investigated. Here I report that interactions between independent synaptic inputs during the induction of CS burst-dependent LTP exhibit a number of novel, computationally relevant properties. Unlike conventional Hebbian LTP, the induction of CS burst-dependent LTP is regulated by proactive and retroactive cooperative interactions between synapses activated several seconds apart. Moreover, activity-dependent, competitive interactions between synapses allow strongly activated synapses to suppress LTP induction at more weakly activated synapses. Thus, CS burst-dependent LTP exhibits a number of the unique properties that overcome significant limitations of standard Hebbian plasticity rules.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-