Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Aortic Stiffness, Increased White Matter Free Water, and Altered Microstructural Integrity

Abstract

Background and purpose

Previous reports from the Framingham Heart Study have identified cross-sectional associations of arterial stiffness, as reflected by carotid-femoral pulse wave velocity (CFPWV) and systolic blood pressure with vascular brain injury. The purpose of this study is to examine free water (FW), fractional anisotropy (FA), and white matter hyperintensities (WMH) in relation to arterial stiffness among subjects of the Framingham Offspring and Third-Generation cohorts.

Methods

In 2422 participants aged 51.3±11.6 years, FA, FW, and WMH were related to CFPWV using voxel-based linear and generalized linear regressions, adjusting for relevant covariables. Mean FW, mean FA, and WMH burden (log transformed) were computed within white matter (WM) region and related to systolic blood pressure and CFPWV using multiple mediation analyses.

Results

CFPWV was found to be associated with higher FW, lower FA, and higher WMH incidence in WM areas covering, respectively, 356.1, 211.8, and 10.9 mL of the WM mask. Mediation analyses revealed that the effect of systolic blood pressure on FW was mediated by CFPWV (direct and indirect effects: a=0.040; P<0.001, and a'=0.020; P>0.05). Moreover, the effect of CFPWV on FA was mediated by FW (direct and indirect effects: b=-0.092; P<0.001, and b'=0.012; P>0.05), whose effect on WMH was, in turn, mediated by FA (direct and indirect effects: c=0.246; P<0.001, and c'=0.116; P>0.05).

Conclusions

From these data, we propose a biomechanical hypothesis designed for future research experiments to explain how hemodynamic alteration may lead to WM injury by impacting cerebral water content and more subtly WM integrity, to finally lead to WMH development.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View