Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses

Abstract

For decades the field of radiation oncology has sought to improve the therapeutic ratio through innovations in physics, chemistry, and biology. To date, technological advancements in image guided beam delivery techniques have provided clinicians with their best options for improving this critical tool in cancer care. Medical physics has focused on the preferential targeting of tumors while minimizing the collateral dose to the surrounding normal tissues, yielding only incremental progress. However, recent developments involving ultra-high dose rate irradiation termed FLASH radiotherapy (FLASH-RT), that were initiated nearly 50 years ago, have stimulated a renaissance in the field of radiotherapy, long awaiting a breakthrough modality able to enhance therapeutic responses and limit normal tissue injury. Compared to conventional dose rates used clinically (0.1-0.2 Gy/s), FLASH can implement dose rates of electrons or X-rays in excess of 100 Gy/s. The implications of this ultra-fast delivery of dose are significant and need to be re-evaluated to appreciate the fundamental aspects underlying this seemingly unique radiobiology. The capability of FLASH to significantly spare normal tissue complications in multiple animal models, when compared to conventional rates of dose-delivery, while maintaining persistent growth inhibition of select tumor models has generated considerable excitement, as well as skepticism. Based on fundamental principles of radiation physics, radio-chemistry, and tumor vs. normal cell redox metabolism, this article presents a series of testable, biologically relevant hypotheses, which may help rationalize the differential effects of FLASH irradiation observed between normal tissue and tumors.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View