- Main
Structured Surfaces for a Giant Liquid Slip
Published Web Location
https://doi.org/10.1103/physrevlett.101.064501Abstract
We study experimentally how two key geometric parameters (pitch and gas fraction) of textured hydrophobic surfaces affect liquid slip. The two are independently controlled on precisely fabricated microstructures of posts and grates, and the slip length of water on each sample is measured using a rheometer system. The slip length increases linearly with the pitch but dramatically with the gas fraction above 90%, the latter trend being more pronounced on posts than on grates. Once the surfaces are designed for very large slips (>20 microm), however, further increase is not obtained in regular practice because the meniscus loses its stability. By developing near-perfect samples that delay the transition from a dewetted (Cassie) to a wetted (Wenzel) state until near the theoretical limit, we achieve giant slip lengths, as large as 185 microm.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-