Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Accelerating the pace of ecotoxicological assessment using artificial intelligence.

Abstract

Species Sensitivity Distribution (SSD) is a key metric for understanding the potential ecotoxicological impacts of chemicals. However, SSDs have been developed to estimate for only handful of chemicals due to the scarcity of experimental toxicity data. Here we present a novel approach to expand the chemical coverage of SSDs using Artificial Neural Network (ANN). We collected over 2000 experimental toxicity data in Lethal Concentration 50 (LC50) for 8 aquatic species and trained an ANN model for each of the 8 aquatic species based on molecular structure. The R2 values of resulting ANN models range from 0.54 to 0.75 (median R2 = 0.69). We applied the predicted LC50 values to fit SSD curves using bootstrapping method, generating SSDs for 8424 chemicals in the ToX21 database. The dataset is expected to serve as a screening-level reference SSD database for understanding potential ecotoxicological impacts of chemicals.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View