Skip to main content
eScholarship
Open Access Publications from the University of California

Configurational-bias sampling technique for predicting side-chain conformations in proteins

  • Author(s): Jain, T
  • Cerutti, D S
  • McCammon, J A
  • et al.
Abstract

Prediction of side-chain conformations is an important component of several biological modeling applications. In this work, we have developed and tested an advanced Monte Carlo sampling strategy for predicting side-chain conformations. Our method is based on a cooperative rearrangement of atoms that belong to a group of neighboring side-chains. This rearrangement is accomplished by deleting groups of atoms from the side-chains in a particular region, and regrowing them with the generation of trial positions that depends on both a rotamer library and a molecular mechanics potential function. This method allows us to incorporate flexibility about the rotamers in the library and explore phase space in a continuous fashion about the primary rotamers. We have tested our algorithm on a set of 76 proteins using the all-atom AMBER99 force field and electrostatics that are governed by a distance-dependent dielectric function. When the tolerance for correct prediction of the dihedral angles is a < 20 degrees deviation from the native state, our prediction accuracies for chi(1) are 83.3% and for chi(1) and chi(2) are 65.4%. The accuracies of our predictions are comparable to the best results in the literature that often used Hamiltonians that have been specifically optimized for side-chain packing. We believe that the continuous exploration of phase space enables our method to overcome limitations inherent with using discrete rotamers as trials.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View