Skip to main content
eScholarship
Open Access Publications from the University of California

The impact of plug-in vehicles on greenhouse gas and criteria pollutants emissions in an urban air shed using a spatially and temporally resolved dispatch model

  • Author(s): Razeghi, G
  • Brown, T
  • Samuelsen, GS
  • et al.
Abstract

With the introduction of plug-in vehicles (PEVs) into the light-duty vehicle fleet, the tail-pipe emissions of GHGs and criteria pollutants will be partly transferred to electricity generating units. To study the impact of PEVs on well-to-wheels emissions, the U.S. Western electrical grid serving the South Coast Air Basin (SoCAB) of California is modeled with both spatial and temporal resolution at the level of individual power plants. Electricity load is calculated and projected for future years, and the temporal electricity generation of each power plant within the SoCAB is modeled based on historical data and knowledge of electricity generation and dispatch. Due to the efficiency and pollutant controls governing the performance of the Western grid, the deployment of PEVs results in a daily reduction of greenhouse gases (GHGs) and tail-pipe emissions, especially in the critical morning and afternoon commute hours. The extent of improvement depends on charging scenarios, future grid mix, and the number and type of plug-in vehicles. In addition, charging PEVs using wind energy that would otherwise be curtailed can result in a substantial emissions reduction. Smart control will be required to manage PEV charging in order to mitigate renewable intermittencies and decrease emissions associated with peaking power production. © 2011 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View