Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A compendium of photopigment peak sensitivities and visual spectral response curves of terrestrial wildlife to guide design of outdoor nighttime lighting

Published Web Location

https://www.sciencedirect.com/science/article/pii/S1439179123000506
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

The presence and proportions of photopigments, which are responsible for the visual and physiological effects of light, vary between taxonomic groups. This leads to differing wavelength sensitivities ranging from ultraviolet (UV; <400 nm) to infrared (IR; >780 nm) and complicates the balancing of spectra used for outdoor lighting to maximize human visual performance while mitigating light pollution effects on wildlife. I developed a database of spectral response information for terrestrial wildlife to create generalized spectral response curves by taxonomic phylum, class, and order. Existing data on species visual sensitivity were collected from previously published research that used behavioral responses, electroretinograms (ERGs), and reflectance within the eye. Resulting summaries of photopigment peak sensitivities (n=968) and sensitivity curves (n=177) allow for general observations. Overall, longer wavelengths provide the highest possibility for supporting human visual performance at night while reducing intrusive overlap with the vision of other species, because many taxonomic groups are sensitive to light in the blue and into the ultraviolet. Comparison of average response curves at the class level and the spectral power distribution of lamps suggests that spectral tuning might reduce the apparency of the lowest correlated color temperature (CCT) lamps to insects, spiders, and non-human mammals the most, with substantial but smaller reductions for reptiles, birds, and amphibians. Spectral tuning, most simply by reducing CCT, should be considered an additional benefit to be used in concert with other mitigation measures such as dimming, shielding, and part-night lighting.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item