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We study three aspects of gauge-gravity duality. First, we explore holographic models of

conformal field theories with boundary by way of holographic renormalization group flows.

Second, we propose an extension and application of the covariant holographic entangelement

entropy proposal to warped anti-de-Sitter spacetimes. Third, we exhibit the existence of

higher-spin black holes with Lifshitz asymptotics in the Chern-Simons formulation of higher

spin gravity.
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Chapter 1

Introduction

1.1 What is holography?

The holographic principle asserts that a gravitational theory in a region of spacetime can be

described by degrees of freedom on its boundary. For some decades, physicists have been con-

structing concrete mathematical realizations of this principle. In particular, they have made

unambiguous specifications of the terms “gravitational theory” and “degrees of freedom,” in

a number of contexts, and there is now a whole industry in the theoretical physics community

consisting of exploring these mathematical constructions and their physical consequences.

The earliest hints at the formalization of the holographic principle arose from the work of

Bekenstein and others on black holes and information. Motivated by the work of Christodoulou,

Ruffini, and Hawking on black hole thermodynamics and gravitational radiation [64, 65, 123],

Bekenstein initiated a program of exploring the relationship between black holes and infor-

mation by asserting that the entropy of a black hole is proportional to the area of its event
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horizon [33];

SBH = ηkBL
−2
p A. (1.1)

Here A is the area of the black hole horizon, Lp = (~G/c3)1/2 is the Planck length, kB

is Boltzmann’s constant, and η is a dimensionless number of order unity. Bekenstein was

originally motivated to write down this formula by noticing that black hole horizon area

exhibits behaviors that are strongly reminiscent of the behavior of thermodynamic entropy.

Perhaps most striking among these behaviors is that black hole [horizon] area never decreases,

and that it increases for all but a very special class of black-hole transformation. [33] This

property of horizon area is much like the behavior of thermodynamic entropy in the Second

Law of Thermodynamics which states that the entropy of an isolated thermodynamic system

never decreases.

Soon after introducing the notion that black hole entropy is proportional to horizon area,

Bekenstein used information-theoretic arguments to strengthen this connection by showing

that if black hole entropy is defined as “the measure of information about a black hole interior

which is inaccessible to an exterior observer,” [34], then it must be proportional to the area

of the black hole horizon. Moreover, he determined that the dimensionless constant η in

formula (1.1) has value 1/4.

Roughly a decade later, Bekenstein further proposed the following universal upper-bound
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on the entropy for bounded systems of effective radius R:

S ≤ 2πkRE

~c
, (1.2)

where E is the total energy of the system and c is the speed of light. One can easily check,

for example, that black holes obey this bound. If we consider the Schwarzschild black hole

and identify R as the horizon radius, then we obtain A = 4πR2, and if we recall that the

horizon radius is given by R = 2GM/c2, then the expression on the right of the bound

(1.2) exactly reproduces the black hole entropy. In other words, the black hole entropy

saturates Bekenstein’s bound. Further investigation following Bekenstein’s demonstrated

that for certain gravitational systems, such as those undergoing gravitational collapse, the

bound (1.2) can be violated. However, the bound has since been generalized by Bousso to

the so-called covariant entropy bound which applies to any spacetime admitted by Einstein’s

equation which satisfies the dominant energy condition for matter [43].

This and other work on black hole information and on the entropy of gravitating systems

hinted at a holographic principle. Entropy, which is the logarithm of the number of quantum

states accessible to a system, “counts” the number of degrees of freedom in a gravitational

system. Therefore, the entropy bounds described above show that the number of degrees of

freedom in a certain region is bounded by a quantity proportional to the area of that region.

This has led some to believe that there is a deep connection between theories that describe

the quantum physics of gravitating systems and theories that describe the degrees of freedom

on their boundaries. In fact, ’t Hooft and Susskind [180, 178] ultimately suggested that when
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one combines quantum mechanics and gravity, one is inevitably led to the conclusion that our

three-dimensional universe can be described as an image of information on a two-dimensional

projection in much the same way that a hologram encodes three dimensional information on

a two-dimensional surface. In fact, this idea is the origin of the the term “holography” in

the present context.

1.2 Toward holographic gauge-gravity duality

Although black holes and information motivate the general notion of holography, they do

not give a precise, mathematical framework in which a correspondence between gravita-

tional degrees of freedom and boundary degrees of freedom is made explicit. This has led

physicists to desire a concrete realization of holography that lends itself to calculation. A

natural, systematic, and by now widely adopted procedure to produce such a realization

proceeds according to the following recipe: (i) construct a quantum theory of gravity on an

asymptotically AdS spacetime, (ii) identify a theory describing the degrees of freedom on its

boundary, and (iii) exhibit a one-to-one correspondence between objects that characterize

the theory of quantum gravity and those that characterize theory living on its boundary.

We don’t yet have a complete quantum theory of gravity, but we do have a good candidate:

string theory, so it’s natural to attempt to find a correspondence between string theory

defined on some spacetime and another theory defined on its boundary. A first step in this

direction is to note that in the large N limit, the perturbative expansion of a diagram in an
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SU(N) gauge theory can be written in the form

∞∑

g=0

N2−2gfg(λ) (1.3)

where g is the genus of an associated surface and fg(λ) is a polynomial in the ’t Hooft coupling

λ. In the large-N limit, we see that large-genus terms will be subdominant. Moreover, the

form of this expansion is the same as one finds in a perturbative theory of closed, oriented

strings if one identifies 1/N with the string coupling. In this sense, the large-N limit of

gauge theories are similar to free string theories [6]. These observations motivate us to look

for a correspondence between a string theory and a qauntum field theory exhibiting gauge

invariance.

A next step in this direction is to note that there is a compelling relationship between

the symmetries of certain gauge theories, and the symmetries of certain spacetime back-

grounds on which string theories can be defined. On the gauge theory side, four-dimensional

N = 4 Super Yang-Mills (SYM) exhibits full SO(4, 2) conformal invariance and possesses

an SU(4) ∼= SO(6) R-symmetry. On the spacetime side, the SO(4, 2) conformal invariance

of N = 4 SYM is precisely the local isometry group of AdS5, the maximally-symmetry so-

lution to the source-free Einstein equation with negative cosmological constant. Moreover,

the group SO(6) is precisely the isometry group of the five-sphere S5. Therefore, at least at

the level of spacetime geometry, we obtain a match between the symmetries of N = 4 SYM,

and those of a string theory defined on AdS5 × S5 [157].

However, the argument for a relationship between gauge theories and string theory on
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AdS is much richer than the basic symmetry analysis just outlined. Such a correspondence is

also well-motivated by the study of D-branes in string theory. In string perturbation theory,

D3-branes are surfaces on which the endpoints of open strings live. To see the relationship

between branes and gauge-gravity duality, one considers a stack of N parallel, coincident

D3-branes in flat 10-dimensional spacetime. The theory contains open strings, which can be

thought of as brane excitations, and closed strings which are excitations of the bulk space. In

the low-energy limit, the closed string excitations decouple from the open string excitations.

Furthermore, in the weak coupling regime gN � 1, where here g denotes the string coupling

constant, the open string excitations describe N = 4 SYM with gauge group SU(N), while

in the strong coupling regime gN � 1 they describe type IIB string theory on AdS5×S5. On

the other hand, the type IIB string theory itself makes sense whether or not the coupling is

weak, so one might conjecture that the open string excitations at weak coupling also describe

type IIB string theory. A natural way to explain this is that the gauge theory and string

theory descriptions that describe the weak coupling dynamics are just two ways of describing

the same thing. Namely, they are equivalent physical theories [117, 157].

Thus far, we have made heuristic arguments for a correspondence between a quantum

theory of gravity on AdS5 × S5 and a gauge theory without gravity living on 4-dimensional

Minkowski space R3,1. We haven’t, however, argued how this relates to holography in the

sense that the gravity theory is being described by a theory living on its boundary. Strictly

speaking, (global) AdS5 is not a manifold with boundary; it contains no points with a

neighborhood homeomorphic to a neighborhood of a point on the boundary of the upper-
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half space Hn ⊆ Rn. However, AdS5 does have a conformal boundary after conformal

compactification, and its conformal boundary is precisely a conformal compactification of

R3,1. In other words, there is a conformal transformation that maps AdS5 onto the interior

of a manifold with boundary, and the boundary of this manifold is precisely a conformal

compactification of R3,1. Moreover, it is possible to view the string theory on AdS5×S5 as a

theory on only the AdS factor by performing a Kaluza-Klein reduction on S5. In this sense,

the correspondence is viewed as being “holographic;” one has a correspondence between a

quantum theory of gravity that effectively lives on AdS5 and a gauge theory that lives on its

conformal boundary R3,1.

1.3 The AdS/CFT conjecture

In the last section, we argued the plausibility of an equivalence between N = 4 SYM and

string theory on AdS5 × S5 which was first proposed by Maldacena [157]. We now describe

a formal conjecture stating the details of this equivalence. The conjecture provides a full

specification of the theories on each side of the equivalence, and it gives the explicit mapping

between quantities that characterize each theory. The details of the mapping between the

theories were clarified by Witten [190].

On the “AdS side” of the equivalence is Type IIB string theory on AdS5 × S5 where the

type IIB 5-form flux through S5 is an integer N and the AdS5 and S5 factors have equal radii

satisfying L4 = 4πgsNα
′. Here, gs is the string coupling constant, and α′ is related to the

string tension as Ts = 1/(2πα′). On the “CFT side” of the equivalence is four-dimensional
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N = 4 SYM in its conformal phase with gauge group SU(N) and Yang-Mills coupling gYM

that is related to the string coupling as g2
YM = gs. The conjecture is that these two theories

are equivalent to one another; there is a one-to-one correspondence between the observables

and dynamics of each theory.

On the AdS side of the correspondence, we decompose fields into Kaluza-Klein towers

on S5. The result is effectively a theory of fields φ∆ on AdS5 where ∆ is the conformal

dimension of the operator on the CFT side to which the field is dual. We suppress other

quantum numbers in the notation. Near the boundary, one assumes that these bulk fields

satisfy the equation for a free, massive field with mass m∆. If we write euclidean AdS5 in

Poincare coordinates (z0, z), where the boundary is located at z0 = 0, then the field will have

one of the following asymptotic behaviors near the boundary:

φ∆(z0, z) ∼





z∆
0

z4−∆
0

. (1.4)

The normalizable mode z∆
0 determines the vacuum expectation values of operators in the

CFT with corresponding conformal dimensions ∆. The non-normalizable mode z4−∆
0 cor-

responds to coupling to sources. In particular, given a bulk field φ∆, we can define an

associated boundary field as follows:

φ̄∆(z) = lim
z0→0

z4−∆
0 φ∆(z0, z). (1.5)

Now let S[φ∆] denote the string action that gives the bulk dynamics, then the conjecture
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states that [190]

exp(−Sos[φ∆]) =

〈
exp

(∫
φ̄∆O∆

)〉
(1.6)

where the left hand side is the bulk action evaluated on shell on bulk fields having associated

boundary fields φ∆, and the right hand side is the generating functional for correlators of

the operators O∆ in the CFT having conformal dimension ∆.

The strong version of the correspondence is conjectured to hold for all values of N and

for all values of the string coupling gs. Indirect but strong evidence for the conjecture exists

in certain limits. In terms of the ’t Hooft coupling λ = g2
YMN on the SYM side of the

conjecture, the limit N → ∞ while keeping λ fixed corresponds to classical string theory

on the AdS5 × S5 side. If one takes the further limit λ → ∞, then classical string theory

reduces to Type IIB supergravity on AdS5 × S5, and it is in this regime that the conjecture

has been checked extensively [150, 92, 167].

1.4 A glimpse at generalizing Maldacena’s conjecture

Although the AdS/CFT conjecture is one of the first concrete, detailed realizations of holog-

raphy, it is not the only realization. Since the statement of the conjecture, there has been an

explosion of work indicating that gauge-gravity duality and holography can be realized on

bulk dimensions other than 5 and that the boundary theory need not even be conformal. In

9



fact, their is now a large body of computations supporting a whole sea of dualities between

gravity theories in the bulk and quantum field theories on their boundaries. There are a

number of reasons for which one might expect that gauge-gravity duality and its connection

to holography is much more general than the conjecture detailed in the last section; c.f.

[132, 173] for reviews.

The first such reason derives from symmetry considerations. Recall that one of the

main plausibility arguments for the duality between a gravitational theory on AdS5 and a

conformal field theory on R3,1 involved matching bulk and boundary symmetries. The bulk

has isometry group SO(4, 2), and this is precisely the symmetry enjoyed by the boundary

theory since SO(4, 2) is the conformal group on R3,1. One may wonder if this symmetry

matching extends to higher dimensions, and its does. In fact, the isometry group of AdSd+1

is SO(d, 2), and this is precisely the conformal group of Rd−1,1 for all d ≥ 3.

For d = 2, the situation is more subtle. On R1,1, there is no longer a finite-dimensional

group describing conformal transformations. Instead, conformal transformations are de-

scribed by an infinite-dimensional Lie algebra called the Witt algebra, and the conformal

symmetry algebra of a euclidean CFT in two dimensions turns out to be the direct sum

Vir ⊕ Vir where Vir is a central extension of the Witt algebra called the Virasoro alge-

bra. As a result, one might speculate that the plausibility argument for a correspondence

between theories of gravity on AdS3 and conformal field theories on R1,1 breaks down. In-

credibly, however, this is not the case. Brown and Henneaux [44] demonstrated that given

appropriate boundary conditions at spatial infinity, the asymptotic symmetry algebra of
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three-dimensional Einstein gravity with negative cosmological constant is the conformal al-

gebra of two-dimensional, Euclidean conformal field theory. Since two-dimensional CFT is

very well-studied, the result of Brown and Henneaux motivates a lot of current work on

gauge-gravity duality.

Recall that the original conjecture between string theory on AdS5 and N = 4 SYM on

R3,1 is considered holographic because the conformal boundary of AdS5 equals the conformal

compactification of R3,1, so the duality is between a gravitating theory on a spacetime, and a

different theory on its boundary which encodes all of the information about the bulk theory.

Just as with the analysis of symmetries, the conformal boundary analysis also extends to

general dimensions; the conformal boundary of AdSd+1 equals the conformal compactification

of Rd−1,1.

We’ve thus far shown that arguments about symmetry and conformal boundaries that

lend plausibility to Maldacena’s AdS5/CFT4 conjecture can be generalized to any non-trivial

dimension. One can go even further than this to argue for the existence of a gauge-gravity

duality that is more general than AdS5/CFT4. For example, if one considers a gauge theory

with gauge group SU(N) and coupling g, then in the so-called ’t Hooft limit where one

takes N →∞ while keeping the combination g2N fixed, one can show that in perturbation

theory, the gauge theory looks the same as a theory of oriented, closed strings with string

coupling constant 1/N . Of course, without further investigation, this argument is itself

merely suggestive since an exact correspondence between gauge and string theory would

require one to go beyond perturbation theory. Nonetheless, in hindsight, such arguments
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are clearly more than just suggestive since, as we review in the next section, gauge-gravity

duality does indeed have concrete realizations beyond the original conjecture.

1.5 Holography since the conjecture

In the last section, we argued that certain aspects of the AdS/CFT correspondence can be

easily generalized to dimensions other than d = 4 and to SU(N) gauge theories other than

N = 4 SYM. Since the original Maldacena conjecture, the prospect of constructing other

concrete examples of holographic dualities has been taken seriously, and enormous progress

has been made in demonstrating that gauge-gravity duality and holography can be concretely

realized in quite varied circumstances. Since this is a broad area of active research, we list

only a few of the notable areas of study that are especially relevant to this dissertation.

One of the most important objects studied in quantum field theories is reonormaliza-

tion group (RG) flow which determines how a theory behaves at different scales. Shortly

after Maldacena’s original conjecture, much work was done to demonstrate how renormal-

ization group flows can be understood holographically. Namely, if one knows that a certain

quantum field theory is holographically dual to a theory of gravity, then one can extract

information about the RG flow of the boundary theory directly from doing calculations in

the bulk. Henningson and Skenderis [127] showed that by regularizing the gravitational part

of the supergravity action, one can compute the Weyl anomaly for CFTs described through

AdS/CFT. Balasubramanian and Kraus [25] proposed a method for computing the boundary

stress tensor associated with a gravitating system in any spacetime that is asymptotically
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AdS and used their result to determine a nonzero ground state energy for global AdS5 and

show that it matched the Casimir energy of N = 4 SYM on S3×R. They then also showed

[26] that AdS can be foliated by a family of surfaces homeomorphic to its boundary and

that there is a holographic correspondence between the theories living on each surface in

the foliation and quantum field theory enclosed in its volume. Moreover, the flow of observ-

ables on successive surfaces can be described by a renormalization group equation, so that

flowing from the boundary theory into the bulk geometry can be interpreted as flowing from

the UV to the IR in the boundary theory. Jan de Boer, Verlinde, and Verlinde [78] used

Hamilton-Jacobi theory to show that the first order flow equations for the classical action of

five-dimensional supergravity take the same form as the Callan-Symanzik RG equations of

four-dimensional large N gauge theory. By regularizing the bulk on-shell supergravity ac-

tion and adding counterterms to remove divergences, de Haro, Skenderis, and Solodukhin [79]

developed the systematics of computing correlation functions using holographic renormal-

ization. For a nice review of holographic renormalization see the lecture notes by Skenderis

[175].

Another active area of research involves determining how one can holographically com-

pute various quantum field theoretic observables. In particular, Ryu and Takayangi [172]

proposed that by computing the areas of certain minimal surfaces in the bulk gravitational

theory that satisfy appropriate boundary conditions, one can compute the entangelement

entropy between two regions in the dual CFT when it is in the ground state. Their work

was extended by Hubeny, Rangamani, and Takayanagi [134] who proposed that for time-
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dependent states on the boundary, a similar prescription can be used in which one computes

the areas of extremal surfaces in the bulk. Although the original proposal of Ryu and

Takayanagi was a conjecture, a large amount of work has since been done to demonstrate its

validity and utility in a wide-variety of contexts. Casini, Huerta, and Myers [51] derived the

Ryu-Takayanagi proposal for a general class of situations in which the so-called entangling

surface dividing the regions on the boundary is spherical. More recently, Lewkowycz and

Maldacena [152] exhibited a generalization of the black hole entropy formula to Euclidean

bulk solutions and in the process effectively proved the proposal of Ryu and Takayanagi for

Einstein gravity.

The last area of research pertinent to this dissertation is so-called higher-spin hologra-

phy. Gravitational theories in AdS containing a guage field for each spin s > 2 were first

constructed by Vasiliev in AdS4 [184]. Such theories are now referred to as “higher-spin”

theories. Vasiliev later extended his results to dimensions other than four, including to AdS3

[185, 186]. In three dimensions, higher-spin theories are characterized by a real parameter λ

which specifies their gauge algebra denoted hs[λ]. Klebanov and Polyakov showed that the

singlet sector of the critical O(N) vector model is dual, in the large N limit, to the minimal

bosonic theory in AdS4 containing massless gauge fields of even spin [141]. In the large

central charge limit, the asymptotic symmetry algebra of such theories was shown [126] to

coincide with W∞[λ]. This motivated the proposal of Gaberdiel and Gopakumar [103] that

hs[λ] higher spin theories are dual to a ’t Hooft-like, large N limit of WN minimal models.
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More recently, Campoleoni, Fredenhagen, Pfenniger, and Theisen [49] demonstrated that

when a three-dimensional higher-spin theory is described as a SL(3,R) × SL(3,R) Chern-

Simons theory, then its asymptotic symmetry algebra can be computed and is given by

two copies of the classical W3 algebra. Motivated by this discovery, much work has been

done in understanding SL(N,R)×SL(N,R) Chern-Simons theory as a theory of higher spin

gravity, especially for N = 3, with the hope that these investigations will yield a large class

of computationally tractable examples with which higher spin AdS/CFT can be explored. A

particularly exciting development was the discovery of higher spin black holes by Gutperle,

and Kraus [120] who constructed solutions to three-dimensional, higher spin gravity in the

Chern-Simons formulation that generalize the BTZ black hole in the sense that they share

its holonomies, but that also carry spin-3 charge. Their work is particularly relevant in

this dissertation as it forms the basis for further investigations of higher spin black holes in

chapter 4.

1.6 What’s in this dissertation?

This dissertation is broken into three chapters, each of which explores a different aspect of

holography and gauge-gravity duality.

In chapter 2, we discuss a simple model for realizing holographic duals of conformal field

theories with boundaries (BCTFs) and interfaces (ICFTs). As we describe in detail, BCFTs

and ICFTs have less symmetry than their boundaryless counterparts. We show that by using

a three-dimensional Janus ansatz in the bulk, one can holographically reproduce important
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aspects of BCFTs and ICFTs including their symmetries. We discuss the holographic dic-

tionary in these models, and we show how one applies the holographic entanglement entropy

proposal of Ryu and Takayanagi to determine both the entanglement entropy and so-called

boundary entropy.

In chapter 3, we apply the covariant holographic entanglement entropy proposal of

Hubeny, Rangamani, and Takayanagi to AdS in fibered coordinates and to Warped AdS

with small warping. We holographically compute the entanglement entropy of a single in-

terval and show that in certain limits, our result reproduces the value for the left and right

central charges computed independently by demanding consistency with the Cardy formula

for two-dimensional CFTs.

In chapter 4, we construct a three-dimensional higher-spin Lifshitz black hole. We begin

by showing that asymptotically Lifshitz spacetimes can be realized in SL(3,R) × SL(3,R)

Chern-Simons theory, and we show that the algebra generating Lifshitz isometries can be

realized in this context. We then show that this class of Chern-Simons solutions admits

non-rotating black hole solutions with sensible thermodynamics and a gauge in which the

corresponding metric is a black hole with a regular horizon.
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Chapter 2

Holographic RG flows and

AdS/BCFT

The AdS/CFT correspondence relates string theory or M-theory on AdSd+1 ×M to a con-

formal field theory in d-dimensions [157, 117, 190]. The best-known example is given by

the duality between Type IIB string theory on AdS5 × S5 and 4-dimensional N = 4 super

Yang-Mills theory.

It is possible to deform d-dimensional conformal field theories by the introduction of

boundaries or defects/interfaces such that a subgroup of their (super)conformal symmetries

is unbroken. The classification and construction of such interface and boundary CFTs is an

important problem that enjoys several physical applications (see e.g. [50] for a discussion of

the two-dimensional case).

In the context of the AdS/CFT correspondence, it is often possible to find a holographic

solution corresponding to the deformation of the CFT. A well-known example consists of

putting a black hole in the bulk of the AdS space which corresponds to a CFT at finite

temperature [191].

There have been several constructions in the literature of holographic duals to interface
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CFTs. In the probe approximation, holographic defects can be described by placing branes

with an AdSd world-volume inside the bulk of AdSd+1 [138]. The Janus solution utilizes an

ansatz where AdSd+1 is sliced using AdSd factors. The solution found in [21] (see also [67,

163]) is dual to an interface of N = 4 super Yang-Mills theory where the Yang-Mills coupling

constant jumps across the interface. The original solution breaks all supersymmetries, but

many generalizations have been found which realize superconformal interface theories [83,

84, 85, 86, 87, 60, 63]. For related work by other authors see [66, 113, 154, 155, 192, 112,

148, 149, 156].

Recently a proposal for the holographic description of boundary CFT has been made in

[181, 101] (building on the original proposal of [138]), where an additional boundary Q in

the bulk of AdSd+1 cuts off the the bulk spacetime. The intersection of Q with the boundary

of AdSd+1 constitutes the location of the boundary of the CFT.

The half-BPS interface solutions can also be used to obtain holographic duals of BCFTs

by taking limits of the regular interface solutions. These solutions were constructed for four

dimensional BCFTs [18, 5, 36] and for two dimensional BCFTs [62]. Note that these so-

lutions are necessarily singular. Recently a completely regular holographic BCFT in two

dimensions was constructed using the higher genus half-BPS interface solutions of six di-

mensional supergravity [61].

Renormalization group flows of CFTs are obtained by deforming the theory by a relevant

operator in the UV. The endpoint of the flow in the IR can be another CFT or a massive

theory. In the context of AdS/CFT, a simple realization of renormalization group flows is

given by turning on a scalar field dual to a relevant operator deformation and solving the

coupled equations of motion in the bulk. Examples of flows between two conformal fixed

points and flows to massive theories can be found in [99, 82, 111]. Note that on the gravity

side, the RG solutions corresponding to the flow to massive theories are generically singular.

The goal of the present paper is to use the techniques of holographic RG flows with the
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Janus ansatz to find new realizations of boundary and interface CFTs. We turn on scalar

field dual to a relevant operator using a Janus-like AdSd slicing of AdSd+1. An new feature

of our paper is that on the CFT side such an ansatz corresponds to turning on a relevant

operator with a source that depends on the coordinate transverse to the interface/boundary.

We obtain numerical solutions of the (d + 1)-dimensional equations of motion which

realize interfaces, and we find that the solutions interpolate between different values of the

source and expectation value of the operator on either side of the interface. Furthermore, we

realize boundary CFTs where the solution becomes singular in the bulk. We interpret this

as a flow where the source of the operator becomes infinite and the theory on one side of the

interface becomes massive leaving only a boundary CFT on the other side of the interface.

We illustrate this with example in d = 2 and d = 4 dimensions.

The organization of the paper is as follows: In section 4.1 we set up the equations of

motion for a scalar coupled to gravity in d+ 1 dimensions for a Janus ansatz, and we discuss

the boundary conditions which correspond to a spatially dependent source for a relevant

operator. In section 4.2 the equations of motion are solved numerically, and examples of

interface CFTs as well as boundary CFTs are presented. In section 4.3 we evaluate the

entanglement entropy following the prescription of [172, 171] for the solutions found in section

4.2. We discuss our results and possible directions for further research in section 4.4.

2.1 AdS-slicing and BCFT

The action for a scalar minimally coupled to d+ 1 dimensional gravity is

S =

∫

M

dd+1x
√
|g|
(
− 1

4
R +

1

2
gµν∂µφ∂νφ+ V (φ)

)
(2.1)
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where we have set Newton’s constant equal to one. The stress tensor takes the following

form

Tµν = ∂µφ∂νφ−
1

2
gµνg

ρσ∂ρφ∂σφ− gµνV (φ). (2.2)

The equations of motion for the coupled scalar-gravity system are

0 = ∆φ− V ′(φ) (2.3)

0 = Rµν −
1

2
gµνR− 2Tµν . (2.4)

We normalize the potential by extracting the cosmological constant

V (φ) = −d(d− 1)

4
+ V̂ (φ). (2.5)

We take V̂ (0) = 0, so for φ = 0 the equations of motion are solved by AdSd+1 with unit

curvature radius, where the metric in Poincaré coordinates is given by

ds2 =
1

z2

(
dz2 + dx2

⊥ − dt2 +
d−1∑

i=2

dx2
i

)
. (2.6)

In contrast, The Janus ansatz uses a deformation of the AdSd slicing of AdSd+1. The Poincaré

slicing (2.6) can be mapped to the AdSd slicing by1

x⊥ = y cosµ, z = y sinµ, (2.7)

1The AdS slicing is related to the one of [21] by a shift in µ by π/2. The present coordinates are more
convenient for the description of BCFT.
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which gives the metric

ds2 =
1

sin2 µ

(
dµ2 +

dy2 − dt2 +
∑d−1

i=2 dx
2
i

y2

)
. (2.8)

Here the slicing coordinate µ ∈ [0, π]. The boundary of the Poincaré slicing metric (2.6) is

located at z = 0. In the AdS slicing, the boundary is mapped into three connected compo-

nents that we conceptually distinguish from one-another, namely µ = 0, π corresponding to

two d-dimensional half spaces and y = 0 corresponding to a (d − 1)-dimensional interface

where the two half-spaces are glued together.

2.2 Janus ansatz and symmetries

In constructing a holographic dual to an ICFT or BCFT, we look for a bulk spacetime whose

group of isometries is the conformal group of the BCFT. For dimensions d > 2 the conformal

group of R1,d−1 is SO(2, d), hence a CFTd is expected to exhibit SO(2, d) invariance.

In this paper we consider an interface or boundary which is the R1,d−2 subspace localized

at x⊥ = 0. By definition we demand that the field theories are invariant under only those ele-

ments of SO(2, d) which preserve the boundary. The subgroup of conformal transformations

that preserve this boundary is precisely the conformal group SO(2, d − 1) of the boundary.

This, in turn, is precisely the isometry group of AdSd. Therefore in searching for a candidate

holographic dual to BCFTd, we look for a spacetime whose bulk exhibits invariance under

the full isometry group of AdSd.

The BCFT symmetries are realized by a Janus ansatz which is based on an AdSd sliced

metric. All other fields have nontrivial dependence only on the slicing coordinate µ. The
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bulk therefore has manifest SO(2, d− 1) symmetry as desired.

ds2 = f(µ)

(
dµ2 +

dy2 − dt2 +
∑d−1

i=2 dx
2
i

y2

)
, φ = φ(µ). (2.9)

With this ansatz, the scalar equation (2.3) becomes

0 = φ′′ − fV̂ ′(φ) +
d− 1

2

f ′

f
φ′, (2.10)

and the gravitational equations become

0 =
f ′′

f
− 3

2

f ′f ′

f 2
+

4

d− 1
φ′φ′ − 2 (2.11)

0 =
1

4
φ′φ′ − d(d− 1)

32

f ′f ′

f 2
− d(d− 1)

8
+
d(d− 1)

8
f − 1

2
fV̂ . (2.12)

Note that only two of the three equations (2.10)-(2.12) are independent. Also note that

equation (2.12) contains only first order derivatives and can be viewed as a constraint of the

evolution with respect to the coordinate µ.

2.2.1 Perturbative solution

Let us assume that the potential V̂ has the form

V̂ (φ) =
1

2
m2φ2 +

∞∑

k=3

V̂ (k)(0)

k!
φk. (2.13)

We find a perturbative solution to the scalar-gravity equations. Consider an ansatz for f

and φ that takes the form of a formal power series in a parameter ε;

f(ε, µ) =
∞∑

k=0

f2k(µ)ε2k, φ(ε, µ) =
∞∑

k=0

φ2k+1(µ)ε2k+1. (2.14)
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Notice that to zeroth order in ε the solution corresponds to the vacuum solution with no

scalar present. The first order solution corresponds to a small scalar living in the vacuum,

the second order solution gives backreaction of the scalar on the gravity solution, and so on.

Plugging this ansatz into the scalar and constraint equations, and setting the coefficients of

ε to zero order-by-order, we obtain a sequence of equations that can, in principle, be solved

recursively for the coefficient functions f2k and φ2k+1 in the expansions (2.14). To zeroth

order in ε, we obtain the following equation:

0 = (f ′0)2 + 4f 2
0 − 4f 3

0 . (2.15)

The solution to this equation gives the AdS vacuum. The higher order functions f2, f4, f6

and so on give modifications to f due to back-reaction. The solution to (2.15) with initial

condition f0(π/2) = 1 is

f0(µ) =
1

sin2 µ
(2.16)

which, as expected, is precisely the appropriate f for the AdSd slicing of AdSd+1; see (2.8).

To first order in ε, one obtains the following equation:

0 = 2f0φ
′′
1 + (d− 1)f ′0φ

′
1 − 2f 2

0V
′′(0)φ1. (2.17)

Plugging in f0 = 1/ sin2 µ and V ′′(0) = m2 (see (2.13)), we obtain

0 = φ′′1 − (d− 1) cotµφ′1 −m2 csc2 µφ1 (2.18)
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whose general solution is a linear combination of the following form

φ(µ) = C1 P
1
2

√
d2+4m2

d−2
2

(cosµ) sind/2 +C2 Q
1
2

√
d2+4m2

d−2
2

(cosµ) sind/2 µ. (2.19)

In the following we will not go to higher than first order in ε since we will solve the equations

numerically.

2.3 Holographic dictionary

The standard holographic dictionary relates the mass m of the scalar field to the conformal

dimension ∆ of the dual operator O∆;

m2 = ∆(∆− d), ∆ =
1

2

(
d+
√
d2 + 4m2

)
. (2.20)

The second relation holds for the so-called “standard quantization.” We will consider opera-

tors which are IR relevant. This is equivalent to considering scalar fields with squared mass

m2 satisfying

− d2

4
< m2 < 0,

d

2
< ∆ < d. (2.21)

Near the AdS boundary in Poincaré slicing the the scalar field behaves as follows

φ ∼ φ1(x)zd−∆ + φ2(x)z∆ + · · · . (2.22)

The standard holographic dictionary identifies φ1 with the (linearized) source added to the

action and φ2 with the expectation value for the operator O∆ [190].

The solution of the linearized scalar equation in the AdS slicing (2.19) behaves as follows

near the boundary µ = 0:

φ(µ) ∼ α µ∆ + β µd−∆ + · · · . (2.23)

24



The constants α, β determine the initial conditions for the evolution equations (2.10) and

(2.11). One might conclude, by following the holographic prescription outlined above that β

corresponds to a constant source and α to a constant expectation value of the dual operator

on the half space located at µ = 0. However, inverting the relations (2.7) for µ → 0 and

y > 0 we obtain

µ =
z

x⊥
, y = x⊥ (2.24)

which is valid as long as y >> µ. Hence by mapping coordinates from AdS slicing to Poincaré

slicing, one obtains the behavior near z = 0 but with x⊥ > 0 which corresponds to the points

away from the interface;

lim
z→0

φ(z, x⊥) ∼ α

(x⊥)∆
z∆ +

β

(x⊥)d−∆
zd−∆ + · · · . (2.25)

In the Poincaré slicing realization of RG flows, the surfaces of constant z correspond to a

fixed energy scale in the dual CFT. It follows from (2.25) that the scalar behavior near the

boundary corresponds to sources and expectation values for the dual operator which are

dependent on the transverse coordinate x⊥. In a recent paper [89] spacetime dependent

couplings in RG-flows were discussed and it was noted that the space time dependence can

change the relevance of the operator perturbation. This is a new feature of the Janus ansatz

and is not the case for holographic RG flows with Poincaré symmetry which are translation

invariant along all directions in Rd. The extra x⊥ dependence of the coupling in (2.25) seems

to make the perturbation marginal, we will still call the evolution RG-flow as the coupled

scalar-gravity evolution shares many features of the holographic Poincaré RG-flow.
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2.4 Holographic ICFT and BCFT via RG flow

Turning on a relevant operator in a d-dimensional CFT generates a renormalization group

flow. In the IR, the theory can flow either to a new conformal fixed point, or become massive.

The holographic realization of RG flows in the Poincaré slicing has been studied many papers

(see e.g. [99, 82]). In the following we will instead study RG flows using the Janus ansatz

described in the previous section.

The main difference between the Poincaré slicing and AdSd slicing lies in the fact that

for the AdSd slicing, as discussed in section 4.1, the UV boundary of AdSd+1 has three

components, corresponding to the two d-dimensional half spaces glued together at a d − 1-

dimensional interface.

For a holographic interface we choose the two boundary components associated with the

two half spaces to be located at µ+ and µ−. Since the metric becomes asymptotically AdS

at µ = µ±, the metric and scalar field behave as follows:

lim
µ→µ±

f(µ) ∼ 1

(µ− µ±)2
+ · · ·

lim
µ→µ±

φ(µ) ∼ α±(µ− µ±)∆ + β±(µ− µ±)d−∆ + · · · . (2.1)

It follows from (2.25) that α± correspond to position-dependent expectation values for O∆

at on the two half spaces and β± correspond to the position-dependent sources for O∆ at on

the two half spaces. Note that for a smooth solution of the equations of motion (2.10) and

(2.11) only two of the four constants α±, β± are independent. In particular for the linearized

solution given in (2.19), one neglects the gravitational back reaction and hence the value of

µ± is unchanged from the undeformed AdS values, i.e. µ− = 0 and µ+ = π. From (2.19)

one can read off a linear relation between a+, β+ and a−, β−. For simplicity and in order

to compare with the boundary conditions that we impose on numerical solutions in later
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sections, we choose to set the expectation value to zero at µ−, namely we choose α− = 0.

The resulting linear relations between α+, β+, and β− are

α+ =
π2d−2∆ csc

(
1
2
π(d− 2∆)

)
Γ
(
d
2
−∆ + 1

)

Γ(1−∆)Γ(d−∆)Γ
(
−d

2
+ ∆ + 1

) β− +O(β2
−), (2.2)

β+ = − sin

(
πd

2

)
csc

(
1

2
π(d− 2∆

)
β− +O(β2

−). (2.3)
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Figure 2.1: Plots of f(µ) and φ(µ) in the ICFT (top row) and BCFT (bottom row) cases
with ∆ = 1.202 and λ4 = −4.8. We have used d = 2 with potential given by (2.4). The
family of curves in each plot is generated by varying the value of the source β−. The
ICFT curves correspond to β− = 0, 0.2, 0.4, . . . , 1.2 while the BCFT curves correspond to
β− = 2, 2.5, 3, 3.5, 4.
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2.5 ICFT and BCFT in d = 2

In order to go beyond the linearized approximation, we numerically solve the equations of

motion (2.10) and (2.11) subject to the constraint (2.12). We choose to locate one boundary

at µ− = 0, and we impose boundary conditions on the scalar field there corresponding to

a vanishing expectation value with only a source turned on, i.e. a− = 0. In the following

we study the case d = 2 which corresponds to a deformation of a 2-dimensional CFT. We

consider a toy model with a potential

V̂ (φ) =
1

2
∆(∆− 2)φ2 +

1

4!
λ4φ

4. (2.4)

As an example we choose the the operator O∆ to be relevant and have dimension ∆ = 1.2

and consider a potential with a small negative quartic coupling λ4 = −4.8. Note that for

these values, φ = 0 is the only extremum of the potential V̂ . The behavior of the resulting

solution depicted in the following is generic for any relevant operator deformation.

As a function of the source β−, the numerical solution displays the following properties:

For very small β−, the values of α+, β+, which are obtained by a numerical fit, approach their

linearized values given by (2.2) and (2.3). The values of the source β+ and expectation value

α+ on the second half space grow for increasing values of the source. Following the discussion

above, we can interpret these solutions as Janus-like interfaces, where the two CFTs defined

on the half spaces at µ = µ± have different x⊥-dependent sources and expectation values on

either side.

At a critical value of β−, both µ+ and α+, β+ diverge, the metric function f approaches

a zero, and the solution becomes singular. We interpret this in the following way: The

operator deformation on the half-space at µ = µ+ becomes so large that the theory is

becoming massive, and the second asymptotic region disappears. Consequently for values of

the source β− larger than the critical value, the solution becomes singular in the bulk and

28



0.2 0.4 0.6 0.8 1.0 1.2
Μ

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

Α+, Β+

Figure 2.2: Plot of expectation value α+ (red) and source β+ (blue) as a function of the
source β−

corresponds to a BCFT since there is only one asymptotically AdS boundary corresponding

to a single half-space.

We will use these numerical solutions to study the entanglement entropy for the ICFT

and BCFT solutions in section 2.10.

2.6 Interface and BCFT in d = 4

In this section we consider specific examples of d = 4 ICFT and BCFT RG-flows. Qualita-

tively the solutions behave in the same way as in the 2-dimensional case presented in section

2.5. We consider a truncation of N = 8 supergravity introduced in [111] called the GPPZ

solution. The potential V can be expressed in terms of a pre-potential

W (φ) = −3

4

[
1 + cosh

(
2φ√

3

)]
(2.5)

which determines the potential as follows:

V (φ) =
1

2
(∂φW )2 − 4

3
W 2

= −3− 3

2
φ2 − 1

3
φ4 + o(φ6). (2.6)
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Figure 2.3: Plots of f(µ) and φ(µ) in the ICFT (top row) and BCFT (bottom row) cases.
We have used d = 4 with GPPZ potential given by (2.5). The family of curves in each
plot is generated by varying the value of the source β−. The ICFT curves correspond to
β− = 0, 0.03, 0.06, . . . , 0.3 while the BCFT curves correspond to β− = 1, 1.03, 1.06, . . . , 1.3.

Expanding the potential around the maximum φ = 0 indicates that the scalar field is dual

to a relevant operator with dimension ∆ = 3. In [111] it was argued that a Poincaré slicing

RG flow solution becomes singular and the singularity represents the flow of N = 4 SYM to

a massive fixed point with N = 1 supersymmetry2. In the following, we numerically solve

the equations of motion for an AdS-sliced RG-flow in d = 4 with the potential given in eq.

(2.6).

As with the 2-dimensional solutions, we set the expectation value α− of the dual operator

at µ− = 0 to zero, and we plot the corresponding solutions for a few values of the operator

source β−. Qualitatively, the behavior of the solutions is very similar to that of the solutions

2See [153, 7] for a recent discussion of Poincaré RG flows for the GPPZ flow and the evaluation of
entanglement entropy for such flows.
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found in section 2.5. For small values of β−, we have a holographic ICFT where at the

µ = µ+ boundary the scalar generally has a nonzero source and expectation value. A set of

representative plots is given in figure 2.3. For a critical value of the source β−, the solution

becomes singular, and we have a holographic BCFT. The location of the singularity is a

function of β−. A set of representative plots is given in figure 2.3.

2.7 Entanglement entropy and minimal surfaces

Consider a QFT defined on a d-dimensional spacetime, and let A be a subregion of a constant

time slice of that spacetime. The entanglement entropy (see e.g. [46] for a review) for A is

defined as follows. Let B be the complement of A in the time slice. The Hilbert space of

the system can be expressed as a tensor product of degrees of freedom localized in either A

or B, namely H = HA⊗HB. The general state of the system can be described by a density

operator ρ on H, and the state of a subsystem A is described by a reduced density operator

ρA = trB ρ. One then defines the entanglement entropy of system A with system B as the

von Neumann entropy associated with the reduced density operator ρA;

SA = − tr ρA ln ρA. (2.1)

A proposal to holographically calculate the entanglement entropy of d-dimensional CFT was

discussed in [172, 171]. Working in Poincaré coordinates, the CFT is defined on Minkowski

space R1,d−1 which can be thought of as the boundary of AdSd+1. The subsystem A is a d-

dimensional sub-region in the constant-time slice. The boundary of A will be denoted by ∂A

(see figure 2.4). One finds the static minimal surface γA that extends into the AdSd+1 bulk

and ends on ∂A as one approaches the boundary of AdSd+1. The holographic entanglement
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Figure 2.5: Minimal surface for calculation
of the holographic entanglement entropy in
the strip geometry in the case of a flow to a
BCFT.

entropy can then be calculated as follows [172, 171]:

SA =
Area(γA)

4G
(d+1)
N

, (2.2)

where Area(γA) denotes the area of the minimal surface γA, andG
(d+1)
N is the Newton constant

of the (d+ 1)-dimensional gravity.

2.8 Janus minimal surfaces

We first adapt the holographic entanglement entropy formula (2.2) to the Janus geometry

in the BCFT case. Given ` > 0, we divide a time slice of the BCFT living on the boundary

µ = 0 into two regions: region A consisting of all points satisfying y < `, and region B

consisting of all points satisfying y > 0. We want to compute the entanglement entropy

between these two regions. Taking a time slice of the Janus metric, we compute the minimal

surfaces that intersects ∂A which consists of those points with µ = 0 and y = `. This setup
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is called the strip geometry. A time slice of the Janus metric has the following metric:

ds2 = f(µ)

(
dµ2 +

dy2 +
∑d−2

i=1 dx
2
i

y2

)
. (2.3)

In the strip geometry, we expect minimal surfaces to be invariant under translations in the

transverse directions ~x = (x1, . . . , xd−2), so we look for minimal surfaces with embedding

coordinates of the following form:

µ(s, ~x) = M(s), y(s, ~x) = Y (s), ~x(s, ~x) = ~x. (2.4)

The induced metric hij(s, ~x) on a manifold described by these embedding coordinates is

diagonal with entries

hss(s, ~x) = f(M(s))

(
M ′(s)2 +

Y ′(s)2

Y (s)2

)
(2.5)

hii(s, ~x) =
f(M(s))

Y (s)2
; i = 1, . . . , d− 2. (2.6)

In the transverse directions, we take the strip to be a cube [0, L]d−2 of side length L. The

area of a surface γM,Y parameterized in this way is

Area[d, f ; γM,Y ] = Ld−2

∫
dsLd,f ;M,Y (s), (2.7)

where

Ld,f ;M,Y (s) =

√
f(M(s))d−1

Y (s)2d−4

(
M ′(s)2 +

Y ′(s)2

Y (s)2

)
(2.8)

can be viewed as the “Lagrangian” for the area functional. The problem of finding minimal

surfaces is equivalent to determining solutions to the Euler equations for the functions M
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and Y obtained by minimizing this area functional. The solution will be characterized by a

parameterized curve (M(s), Y (s)) in the µ-y plane which gives the constant ~x profile of the

surface. The minimal surface Euler equation obeyed by the component functions M and Y

is given by

0 = 2Y f(M)
[
(d− 2)Y 2 (M ′)

3
+ (d− 3)M ′ (Y ′)

2
+ Y (M ′Y ′′ − Y ′M ′′)

]

+ (d− 1)Y ′f ′(M)
[
Y 2 (M ′)

2
+ (Y ′)

2
]
. (2.9)

2.9 Asymptotic Expansion and initial data

In a sufficiently small neighborhood of the boundary µ = 0, any minimal surface intersecting

the point (µ, y) = (0, `) can be parameterized as follows (M(s), Y (s)) = (s, Y (s)). In other

words, the parameter s is simply the angular coordinate µ. The minimal surface equation

(2.9) then reduces to the following equation for the function Y :

0 = (d− 1)f ′Y ′
(
Y 2 + (Y ′)

2
)

+ 2fY
(

(d− 2)Y 2 + (d− 3) (Y ′)
2

+ Y Y ′′
)
. (2.10)

In this description, the boundary data are (0, `) = (0, Y (0)), so in particular, we require the

initial datum Y (0) = ` on the function Y . On the other hand, for the boundary conditions

which we are considering, i.e. setting the expectation value of the dual operator to zero, f

has the following asymptotic expansion near µ = 0 We display the expansion for the two

cases we are discussing in the paper. First, for d = 2 and generic 1 < ∆ < 2

d = 2,∆ : φ(µ) = β−µ
2−∆ − 1

12
β−(∆− 1)µ4−∆ + · · ·

f(µ) =
1

µ2
+

1

3
+

1

15
µ2 − 2β2

−
∆− 2

2∆− 5
µ2−2∆, (2.11)
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and second for d = 4,∆ = 3 and the GPPZ potential.

d = 4,∆ = 3 : φ(µ) = β−µ− β−µ3 log(µ) + · · ·

f(µ) =
1

µ2
+

(3− 2β2
−)

9
+

2β2
−

5
µ2 log µ+ · · · . (2.12)

In both cases β− is the source of the dual operator and we have set the expectation value to

zero. The behavior of the minimal surface function Y near µ = 0 can then be obtained by

plugging the expansion of f into (2.10), yields the following expansions

d = 2,∆ : Y (µ) = `+ ŷ µ2 +
β2
− ŷ(∆− 2)

(∆− 3)(2∆− 5)
µ6−2∆ + · · · (2.13)

d = 4,∆ = 3 : Y (µ) = `+
`

2
µ2 + ŷ µ4 +

β2
− `

6
µ4 log µ+ · · · . (2.14)

For both cases the expansion depends on two arbitrary integration constants `, ŷ, as is

expected for a second order differential equation. The constant ` determines the location

where Y intersects the AdS boundary at µ = 0, the second constant y determines (roughly)

how the minimal surface curves.

2.10 Holographic entanglement entropy in d = 2

Setting d = 2 in the metric (2.3) yields

ds2 = f(µ)

(
dµ2 +

dy2

y2

)
. (2.15)

In order to compute the engtanglement entropy for a strip of width ` > 0, we need to

compute minimal surfaces that intersect the point (µ, y) = (0, `). In this low-dimensional

case, the surfaces in question are really just geodesics in the geometry (2.15). For the AdS

vacuum, one has f(µ) = csc2 µ with µ ∈ [0, π], and the calculation is easy since (2.15) is the
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metric on the Poincaré upper-half plane in polar coordinates with angular coordinate µ and

radial coordinate y. In this case, geodesics come in two classes: semicircles centered on the

axis µ = 0 and straight lines perpendicular to this axis. Given a strip of width `, there is a

family of geodesics consisting of the straight line and semicircles with different radii which

intersect the point (0, `).

We are most interested in going beyond the AdS vacuum and examining those functions

f that fall into one of the following two families: those that correspond to a holographic

realization of an ICFT, and those that correspond to a holographic realization of a BCFT.

In both cases, f behaves like csc2 µ as µ→ 0 since the spacetime is asymptotically AdS. In

the ICFT case, the geometry flows to another AdS region at some µ = µ∗ while in the BCFT

case, the geometry becomes singular at some µ = µ∗. For such functions f , geodesics in the

geometry (2.15) with initial data imposed near µ = 0 behave like geodesics on the Poincaré

upper-half plane, but they are deformed away from these vacuum solutions as flow move into

the bulk. Interestingly, for d = 2 one of the vacuum solutions survives for general f . For

any ` > 0 and any f , the geodesic equation (2.9) is solved by Y (s) = `, the circular solution

centered at the origin. To determine all other relevant geodesics in the ICFT and BCFT

cases, we turn to numerical methods. We find that with the exception of the circular solution

Y (s) = `, geodesics in the ICFT and BCFT cases exhibit distinct qualitative behaviors in

the bulk.

2.10.1 ICFT geodesics in d = 2

For a given ` > 0, there is an infinite family of geodesics intersecting the point (µ, y) =

(0, `) on the boundary. In the parameterization Y = Y (µ), members of this family are

distinguished by the value of the parameter ŷ in the asymptotic expansion (2.13). In figure

2.6, curves colored orange have negative values of ŷ, while curves colored blue have positive
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Figure 2.6: Geodesics for d = 2 holographic
ICFT geometries with ∆ = 1.212, λ4 =
−4.8, β− = 0.6, and ` = 1. The pink ra-
dial line indicates the µ = µ∗ ray where the
geometry is asymptotically AdS3.
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Figure 2.7: Geodesics for d = 2 holographic
BCFT geometries for ∆ = 1.212, λ4 = −4.8,
β− = 1.4, and ` = 1. The red line indicates
the µ = µ∗ ray where the geometry develops
a curvature singularity.

values of ŷ. The purple curve has y = 0 and is the semicircular solution Y (µ) = `. Those

curves with a larger value of y intersect the z = 0 axis at lower values of x⊥. Solutions that

flow all the way to the second AdS region at µ = µ∗ correspond to entangling surfaces that

stretch across the interface. Those orange solutions that flow back to the first asymptotic

region at µ = 0 correspond to entangling surfaces that remain on one side of the interface.

2.10.2 BCFT geodesics in d = 2

As in the ICFT case, for a given ` > 0, there is an infinite family of geodesics intersecting

the point (µ, y) = (0, `), and they are differentiated by the parameter ŷ in (2.13). Unlike

in the ICFT case, the geometry exhibits a curvature singularity at µ = µ∗, and this affects

the geodesics. In particular, there is exactly one geodesic that reaches the singularity: the

circular solution Y (µ) = `. Every other geodesic is repelled by the singularity, turns around,

returns to the asymptotic AdS region µ = 0, and intersects the µ = 0 axis. This behavior

can be seen in figure 2.7. As in the ICFT plot, orange curves have ŷ < 0 while blue curves

have ŷ > 0, and the purple curve is the circular solution.
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Figure 2.8: Boundary entropy “g-factor” g as a function of the source strength β− for a
potential with ∆ = 1.212 and λ4 = −4.8.

2.10.3 BCFT holographic entanglement and boundary entropy

Given a two-dimensional BCFT, it is a well-known result [46] that the entanglement entropy

of the strip geometry is

S =
c

6
ln
`

ε
+ ln g (2.16)

where c is the central charge of the BCFT, ` is the width of the strip, ε is the UV cutoff,

g is the so-called g-factor introduced in [2], and ln g is called the boundary entropy. Since

the symmetric semi-circular geodesic is the only one that reaches the singularity at µ = µ∗

and therefore the unique one to enclose the boundary of the CFT at the origin, we use it to

compute the holographic entanglement entropy, and from this, we can extract the boundary

entropy. The area of a minimal surface is computed via (2.7) and (2.8). For the circular

solution, we can use the (µ, Y (µ)) parameterization for the whole curve with Y (µ) = `. The

function f ∼ 1/µ2 as µ → 0 signaling a UV divergence that must be regulated. In the

Poincaré slicing (2.6), the UV regulator can be taken as a hard cutoff at some small z = ε.

The coordinate transformation (2.7) shows that the appropriate corresponding µ used to

cutoff the area integral is µε = ε/` for small ε. The minimal surface therefore ranges over

values of µ satisfying µε < µ < µ∗, and we obtain the following expression for the holographic
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entanglement entropy in the strip geometry:

S =
1

4G
(3)
N

∫ µ∗

µε

dµ
√
f(µ). (2.17)

The series expansion of f about µ = 0 shows that after performing the integral, the only

divergent piece is that coming from the leading behavior f ∼ 1/µ2 in the AdS region. In

fact, the divergent part is precisely log(`/ε) as expected from the formula (2.16). Therefore,

the boundary entropy can be identified as

ln g = lim
ε→0

[
1

4G
(3)
N

(∫ µ∗

µε

dµ
√
f(µ)− ln

`

ε

)]
. (2.18)

For the BCFT solution presented in section 2.5 the boundary g factor given in (2.18) can

be evaluated numerically. For the d = 2 RG flow BCFT found in section 2.5, the solution

depends on the strength β− of the operator source. In figure 2.8 we plot the g factor as a

function of β− for the numerical example given in section 2.5.

2.11 Holographic Entanglement entropy in d = 4

The qualitative features of the AdS sliced RG flow solutions in two and four dimensions

are very similar. In this section we solve the minimal surface equations in the GPPZ flow

solutions presented in section 2.6, and we calculate the holographic entanglement entropy

for the strip geometry.

Inspection of the minimal surface equation (2.10) shows that, as the term proportional to

(M ′)3 is non-vanishing in d = 4, the circular solution Y (µ) = ` does not describe a minimal

surface. However in d = 4, the BCFT background admits a solution which serves as the

analog of the d = 2 circular solution; it is the unique solution that satisfies the desired initial

condition Y (0) = `, and it also reaches the singularity. This solution can be determined
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Figure 2.9: Critical surface profiles for d = 4
holographic ICFT geometries with ∆ = 3,
β− = 0.3, and ` = 1. The red line indi-
cates the µ = µ∗ ray where the geometry is
asymptotically AdS5.
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Figure 2.10: Critical surface profiles for d =
4 holographic BCFT geometries with ∆ = 3,
β− = 0.6, and ` = 1. The red line indicates
the µ = µ∗ ray where the geometry develops
a curvature singularity.

numerically by shooting for the appropriate value of the second undetermined parameter y

in the asymptotic expansion (2.14) with d = 4.

2.11.1 ICFT minimal surfaces in d = 4

For each ` > 0, there is a family of minimal surfaces satisfying the initial condition Y (0) = `.

We have plotted this family for the case ` = 1 in figure 2.9. We have identified two subfamilies

with colors orange and blue. The orange curves are solutions with y less than a critical value

y(crit). These solutions either flow back to the asymptotic AdS region at µ = 0 with a final

value of Y that is less than `, or they to the asymptotic AdS region at µ = µ∗. The blue

curves are solutions with y < y(crit). These solutions all flow back to the asymptotic AdS

region µ = 0 with a final value of Y that is greater than `.

2.11.2 BCFT minimal surfaces in d = 4

As in the ICFT case, for each ` > 0 there is an infinite family of minimal surfaces satisfying

the initial condition Y (0) = `. We have plotted this family for the case ` = 1 in figure 2.10.
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Again, we have identified two subfamilies with colors orange and blue which correspond to

solutions with y < y(crit) and y > y(crit) respectively. In addition, we have plotted a purple

curve that corresponds to y = y(crit). This curve is the analog of the d = 2 circular solution

Y (µ) = ` in that it is the unique solution reaching the singularity given the initial data

Y (0) = `.

2.11.3 Holographic entanglement entropy for critical solution

In this section we will calculate the holographic entanglement entropy for the critical BCFT

curve obtained in the previous section. The entanglement entropy for an RG flow geometry

f(µ) and the critical curve Y (µ) is given by

S =
L2

4G
(5)
N

∫ µ∗

µε

dµ
f(µ)3/2

Y (µ)3

√
Y (µ)2 + Y ′(µ)2, (2.19)

where as in the case d = 2, µε = ε/` for small ε. Due to the singular behavior of f near

µ = 0, the expression for S is divergent. Using the expansion around µ = 0 given in eq (2.12)

and (2.14), one can extract the divergent pieces, and one finds that there is a quadratically

divergent and logarithmically divergent contribution with respect to the cutoff ε. One can

define a regular, finite part of the entanglement entropy by subtracting the appropriate

divergent terms and then taking ε→ 0;

Sreg = lim
ε→0

[
L2

4G
(5)
N

(∫ µ∗

µε

dµ
f(µ)3/2

Y (µ)3

√
Y (µ)2 + Y ′(µ)2 − 1

2ε2
+
β2
−

3`2
log

`

ε

)]
. (2.20)

Note that the logarithmically divergent term depends on the source β− of the operator de-

formation. We have evaluated the subtracted finite part of the entanglement entropy as a

function of ` and β−. The numerical results for Sreg are well approximated by a 1/`2 depen-

dence for any value of β−. This was to be expected since the only dimensionful parameter on
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Figure 2.11: The subtracted finite entanglement entropy as a function as a function of β−
for fixed ` = 2.

which Sreg can depend is the strip width `, and the dependence must be 1/`2 as can be seen

from (2.20). The dependence on the operator source is more complicated and reasonably

well-approximated by a quadratic polynomial in β−. A representative plot is presented in

Figure 2.11. It is an open and interesting question whether either the logarithmically diver-

gent or finite term are universal and can be interpreted analogously to the g-factor in the

d = 2 system. Note that the integration constant β− determines the value of µ where the

geometry becomes singular and is therefore equivalent to the tension of the cut-off brane in

the Takayanagi realization of BCFT. We leave investigations of these questions for future

work.

2.12 Discussion

In this paper we have constructed a new holographic description of interface and boundary

CFTs utilizing an AdS-slicing ansatz for a holographic RG-flow. In the discussion we compare

and contrast this construction with other approaches developed recently in the literature.

The construction of Takayanagi et al [181, 101] (see [138] for an earlier, closely related

construction) also uses an AdSd slicing of AdSd+1 like that given in (2.8). The bulk space
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is cut off by the presence of a brane with AdSd world volume at a fixed value of µ, which is

determined by the tension of the brane via matching conditions. In the RG-flow solutions

found in the present paper the brane is replaced by the singularity where f = 0. For the RG-

flow solution, the minimal surface that is used for the calculation of the entanglement entropy

is uniquely determined by the strip width ` on the boundary. This is to be contrasted with

the calculation of the entanglement entropy in [101], where there is a one-parameter family

of extremal surfaces where the minimal area solution is used to calculate the entanglement

entropy.

The BCFT RG-flow solutions develop curvature singularities, hence the supergravity ap-

proximation, which is only valid for small curvatures, breaks down near the singularity. This

behavior is similar to what is found in many Poincaré-sliced RG-flow solutions corresponding

to relevant operator deformations such as the GPPZ flow [111]. The interpretation of the

Poincaré RG-flow is that the theory becomes massive and is in a gapped phase. Nevertheless,

calculations of correlations functions, Wilson loops and entanglement entropy are possible

as long as the results are dominated by the region far away from the singularity. We fol-

lowed the same assumption in the calculation of the entanglement entropy for the AdS-sliced

BCFT RG flows presented in this paper.

In some cases the singularities can be resolved by lifting the solution to higher dimen-

sions (see for example the discussion of the Coulomb branch in N = 4 SYM given in

[144, 140, 100]). Another example of regular BCFT solutions in six-dimensional super-

gravity corresponding to a backreacted solution of self-dual strings ending on three branes

in six-dimensions was found in [61].

As already remarked in [82], in contrast to the Poincaré-sliced RG flows, it is not possible

to explicitly integrate the AdS-sliced RG equations of motion in a first order form based

on super potential. Therefore the only solutions we were able to find were numerical. It

is an interesting question whether it is possible to find analytic solutions as these would
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be very useful for, e.g. the holographic calculation of correlation functions in the BCFT.

One approach to construct exact solutions, which has been very fruitful in the past, is to

solve BPS conditions for the existence of backgrounds which preserve a subset of super

symmetries of the AdS vacuum. This approach has been very successful in constructing half

BPS Janus solutions in type IIB [83, 84], M-theory [85, 88] and six dimensional supergravity

[60, 63, 62, 61]. It would be very interesting to explore these methods to construct BPS

solutions for the the relevant deformations related to the ones in the present paper. If

such solutions existed, they would correspond to new interface and boundary CFTs which

preserved some superconformal symmetries. Exact solutions would also be important to go

beyond the numerical evaluation of the entanglement entropy and hence clarify the physical

interpretation of the divergent and finite terms in the entanglement entropy.

In 2-dimensional CFT renormalization group flows, ICFTs and BCFTs have also been

discussed from a purely field theoretic point of view. For recent examples concerning flows

of minimal model CFTs see e.g. [45, 98, ?]. Note that in these examples the relevant

perturbations do not have the x⊥ dependence as the ones discussed in the present paper. A

holographic description of x⊥-independent BCFT flow will entail an ansatz that is different

from the Janus ansatz used here. On the other hand it would also be interesting to study the

x⊥-dependent relevant perturbations on the field theory side. We leave this for investigation

in future work.
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Chapter 3

Warped entanglement entropy

Understanding how the holographic principle works beyond the example of anti-de Sitter

space is a crucial and beautiful challenge which will elucidate the dynamics of quantum

gravity in general backgrounds. A natural example is the geometry describing our universe,

which is cosmological in nature, and more closely resembles an FRW/de Sitter type uni-

verse. As another example, the geometry describing regions near the horizons of certain

astrophysical black holes is not quite anti-de Sitter space but more closely resembles a slight

deformation thereof known as the NHEK/warped AdS3 geometry. There have been several

proposals for holographic descriptions of these and other non-AdS spacetimes [?, ?, ?], and

the story is still unfolding.

In this paper we will focus on aspects of the warped AdS3 geometry and its putative

holographic description. As we will describe more concretely below, warped AdS3 is a de-

formation of AdS3 that destroys the boundary asymptotics. The deformation preserves only

an SL(2,R) × U(1) subgroup of the original SL(2,R) × SL(2,R) isometry group of AdS3.

From the point of view of the two-dimensional CFT dual to AdS3, the warping of AdS3

corresponds to an irrelevant chiral deformation (which does not die away in the ultraviolet).

Geometrically this manifests itself in the destruction of an asymptotically AdS3 boundary.
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Holographic considerations of this geometry began with [?]. Based on the thermodynamic

properties of asymptotically warped AdS3 black holes [161, ?, 160, 42], whose entropy could

be written in a suggestive, Cardy-like fashion, it was proposed that it was dual to a two-

dimensional conformal(-esque) field theory. Later work embedded and studied warped AdS3

within string theory [12, 162, 176, 81, 94, 19, 139] and studied properties of two-dimensional

field theories, dubbed warped CFTs, whose symmetry structure matches that of warped

AdS3 [129, 80]. Other work studied the wave equation, correlation functions and quasinor-

mal modes of fields in warped AdS3 [59, 58, 57, 13, 14]. Much of the work on warped AdS3

has so far focused on thermodynamic properties of the theory and its asymptotic symmetry

structure [71, 70]. In this paper we would like to focus instead on entangling properties of

asymptotically warped AdS3 geometries. We do so by exploiting the simple holographic man-

ifestation of the entropy of entanglement of some state in a CFT as an extremal surface in

the bulk geometry dual to such a state, as described by [134], generalizing [172, 171]. Though

entanglement entropy is a simple property of the quantum state, it has sufficient information

to independently verify features derived from the thermodynamics, such as central charges

and left- and right-moving temperatures. It can also provide additional insight into the

nature of the dual as we will shortly discuss. We now move on to briefly review the warped

AdS3 geometry and the holographic entanglement entropy proposal before summarizing our

results and giving an outline of the paper.

3.1 Warped AdS3

Consider AdS3 expressed as a real-line or circle fibration over a Lorentzian AdS2 base space.

These geometries can be deformed with a nontrivial warp factor into the warped AdS3

spacetimes we will consider later. The (spacelike) warped AdS3 metric in global coordinates
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with warp factor a ∈ [0, 2) is given by1

ds2 =
`2

4

(
−(1 + r2) dτ 2 +

dr2

1 + r2
+ a2(du+ r dτ)2

)
. (3.1)

The coordinates range over the whole real line, {r, τ, u} ∈ R3, although later we will consider

compactifying u to recover a near-horizon extremal BTZ geometry. To obtain AdS3, one sets

a = 1. The conformal boundary in the case of a = 1 is the usual cylinder parsed by null

coordinates and looks like a barber-shop pole; see Figure 3.1. The case a 6= 1 corresponds

to spacelike warped AdS3, which is the case we shall focus on in this paper. We will also

comment on the timelike warped AdS3 case, whose base space is Euclidean AdS2, in Section

3.12. For a 6= 1 there is no conformal boundary [35], although a generalized notion of

“anisotropic conformal infinity” can be defined [131]. We will also consider the geometries

in Poincaré-like coordinates with metric

ds2 =
1

4

(
−`2dψ

2

x2
+ `2dx

2

x2
+ a2

(
dφ+ `

dψ

x

)2
)
. (3.2)

and coordinate ranges {ψ, x, φ} ∈ R3.

These spacetimes posses SL(2,R)×U(1) isometry for a 6= 1 and appear in a Penrose-like

near-horizon limit of extremal black holes. In the context of a trivial warp factor a = 1,

these geometries are locally AdS3, and we expect the HRT proposal to apply. We will see

that our results match field theory expectations, where the field theory is placed at zero

left-moving temperature and finite right-moving temperature. This state of the field theory

has not yet been considered in the holographic entanglement entropy literature, though it is

closely related to the extremal limit of the rotating BTZ black hole, considered in [134].

1In the literature, usually in the context of topologically massive gravity, one often sees an alternative
convention in which the metric is characterized by parameters ˜̀ and ν related to our parameters by ˜̀2 =
`2(ν2 + 3)/4 and a2 = 4ν2/(ν2 + 3).
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Figure 3.1: This is the global AdS3 cylinder parameterized by the coordinates (3.1). The
coordinates tg and θg represent the usual global coordinates. We will primarily consider
sticking to a region of the boundary with r = ∞ for simplicity. This figure is taken from
[15].

For the case of nontrivial warp factor, the purported holographic duals of the spacetime

are referred to as warped CFTs and possess SL(2,R) × U(1) symmetry. This symmetry is

automatically enhanced to two infinite-dimensional local symmetries [129]: the left-moving

SL(2,R) is enhanced to a left-moving Virasoro, while the right-moving U(1) is enhanced

to a left-moving U(1) Kac-Moody current algebra (indeed, the term WCFT is used for the

case that the U(1) is not enhanced to a full Virasoro, which is also possible). Not much

is known about these theories (a nontrivial example has only recently been suggested in

[72]), but the symmetries can still be used to constrain properties that such a theory could

have. This approach has been used successfully in reproducing a Cardy-like formula for the

asymptotic growth of states in [80]. The bulk geometries are often considered in the context

of topologically massive gravity, but for simplicity we shall restrict ourselves to the case

where they are solutions of three-dimensional Einstein gravity with matter fields, as studied
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in [93, 12, 81]. In string theory, for example, the warped geometries can be constructed by

a hyperbolic, marginal deformation of the SL(2,R) WZW model [136].

3.2 Holographic entanglement

The use of entanglement entropy to study quantum field theories continues to surge due to

its relevance to quantum gravity and condensed matter physics and its analytic tractability.

Holographically, this has been studied with the Ryu-Takayanagi (RT) proposal [172, 171] for

computing the entanglement entropy via geometric methods in the bulk. The proposal now

has support for multiple intervals in asymptotically AdS3 bulk spacetimes [124, 122, 95] and

spherical entangling surfaces in any dimension [51]. Strong arguments for the general case

are provided in [152] and essentially prove the conjecture. Quantum corrections have been

analytically computed in [32], with a general prescription appearing in [96]. Prescriptions for

gravitational theories with higher curvature corrections are given in [135, 39, 102, 40, 177]

and, for higher spin theories, in [8, 76]. The covariant Hubeny-Rangamani-Takayanagi (HRT)

proposal [134] has far less support, though it has passed nontrivial consistency checks [47,

188]. It is natural to wonder how generally the proposal can apply. In this paper, we would

like to take a few steps toward understanding the issues of holographic entanglement entropy

in warped AdS3 spacetime and two-dimensional warped conformal field theory (WCFT2).

The spacetimes we will study are non-static and will therefore require the covariant proposal.

Although these spacetimes are often studied as solutions of topologically massive gravity, here

we will consider the case where they are supported by Einstein gravity plus matter, allowing

us to use the usual HRT proposal.

The goal of the HRT proposal in [134] is to obtain a holographic prescription for com-

puting the entanglement entropy for time-varying states in QFTs with bulk duals which are

non-static, asymptotically AdS spacetimes. To describe the proposal, we consider a (d+ 1)-
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dimensional asymptotically AdS spacetime M with d-dimensional boundary ∂M , and we

consider a field theory defined on this boundary. We choose a foliation of ∂M by spacelike

hypersurfaces (time slices) M̂t . For each time t ∈ R, we write the slice M̂t as a union of

disjoint sets At and Bt, and we can compute the entanglement entropy SAB(t) between the

degrees of freedom in the two regions for a given state (density matrix) of the full system

living on M̂t.

The HRT proposal is as follows: for each time t, determine the co-dimension 2 extremal

surfaces Wt satisfying ∂Wt = ∂At. If there is more than one extremal surface satisfying these

boundary data, then choose the extremal surface Wt,min with smallest area. Then we have

SAB(t) =
Area(Wt,min)

4G
(d+1)
N

. (3.3)

The question of which homology class to consider is interesting in the context of the covariant

proposal [133], but we will not need to consider it here. This is the correct expression for

Einstein gravity coupled to matter, which are the theories we will consider here, although

subleading corrections in GN (bulk quantum corrections) will depend on the bulk matter

supporting the geometry.

It is worth noting a rather remarkable feature of the above proposal (3.3). In the context

of Einstein theories of gravity the entanglement entropy manifests itself in a purely geometric

form at leading order in GN , as the area of an extremal surface. This universal feature

is particularly surprising, given that entanglement entropy is a property of the particular

quantum state under consideration, which is generally a functional of all the bulk matter

fields and not just the metric. It is reminiscent of the universality of the Bekenstein-Hawking

entropy of a black hole, which also manifests itself as a geometric area in Einstein theories

of gravity, regardless of the matter content that constitutes the black hole.

In our use of this formula, we will keep the slice chosen on the boundary arbitrary but
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spacelike. Since we consider exclusively (2+1)-dimensional bulk geometries, this means that

our entanglement entropy answers will be phrased in terms of two distinct coordinate sepa-

rations, which can then be chosen to give a particular spacelike slice. We present the answers

in this way because it makes the split into left-moving and right-moving sectors transparent;

see (3.28) for one such example. It is important to note that the HRT prescription (and

indeed the original Ryu-Takayanagi prescription) is computing the entanglement entropy

between regions At and Bt defined by the unique geodesic along the boundary which con-

nects the two points which define their separation. In other words, once one picks two points

on the boundary to connect by a bulk geodesic, there remains an ambiguity in choosing the

spacelike curves on the boundary which connect the two points and define the regions At and

Bt. The holographic entanglement entropy prescription naturally picks the unique geodesic

along the boundary which connects the two points as defining the spatial regions At and Bt.

To elaborate further, imagine applying the covariant proposal to the Poincaré patch of

AdS3 by picking points on the boundary that are spacelike separated but arbitrary. The

length of the regulated bulk geodesic connecting these two points, divided by 4GN , is given

in terms of CFT quantities as

SEE =
c

3
log

√
L2
x − L2

t

ε
. (3.4)

To match with the universal 2D CFT answer, we conclude that the region being picked out

on the boundary theory is the geodesic along the boundary which connects the two points,

since this curve has length
√
L2
x − L2

t . The fact that in this example the spatial length

at fixed time gets replaced with the invariant Minkowskian length is a result of Lorentz

invariance. This will not be the case once we introduce a dimensionful scale, e.g. the radius

of the cylinder for global AdS3 or the temperature of a black hole.
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3.3 Summary and outline

Although the validity of applying the HRT proposal to spacetimes with different asymptotics

is an interesting open question,2 in this paper we shall pursue a more modest goal. We will

set up what is effectively a perturbation theory about the AdS3 point by considering warping

a = 1+δ and cutting off the WAdS3 spacetime deep in the interior, where it is AdS3-like. This

can be understood as AdS/CFT in the presence of an infinitesimal, irrelevant deformation,

a context in which holographic renormalization can be understood perturbatively in the

deformation [182, 183].3 Thus, attacking the problem in this way puts our analysis on firmer

footing. We will see that such an approach gives sensible results, and in the regime of large

separation in the fiber coordinate, the series can be summed to all orders in δ. The result

is precisely that of two-dimensional CFT, with cL = cR = 3`a/2GN . This exactly matches

an independent proposal for the central charge, deduced by demanding consistency with

the Cardy formula for two-dimensional CFTs [12]. We will also consider the warped BTZ

black hole and again find universal CFT results which allow us to read off the left-moving

and right-moving temperatures. Our central charge and temperatures altogether satisfy the

Cardy formula and reproduce the entropy of the warped BTZ black hole.

In Section 3.4, we will apply the HRT proposal to locally AdS3 spacetimes written as a

fibration over a Lorentzian AdS2 base space. In Section 3.7, we will deform these geometries

into warped AdS3 and set up the problem of applying the HRT proposal to these spacetimes.

In Section 3.9, we will complete the problem by performing a perturbative application of the

HRT proposal to warped AdS3 geometries, where we will be perturbing around the locally

AdS3 geometries considered in Section 3.4. Finally, we will summarize and look toward

future work in Section 3.15.

2We stress that calculations like the ones in [?], which consider a decoupled IR geometry, are still under-
stood as occurring in an asymptotically AdS spacetime, as discussed in [174].

3For a specific implementation in Lifshitz backgrounds with z = 1 + ε, see [142].
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3.4 AdS3 in fibered coordinates

We begin our story by considering AdS3 in fibered Poincaré coordinates and fibered global

coordinates. We will see that these coordinate systems are dual to states at zero left-moving

and finite right-moving temperature, a feature reflected in the answer for the entanglement

entropy. The geometry obtained by compactifying the fiber coordinate appears in a near-

horizon limit of the extremal BTZ black hole. If the fiber coordinate remains uncompactified,

the geometry is instead the near-horizon limit of a boosted extremal black string.

3.5 Poincaré fibered AdS3

The metric (3.2) with a = 1 reduces to

ds2 =
1

4

(
−`2dψ

2

x2
+ `2dx

2

x2
+

(
dφ+ `

dψ

x

)2
)
. (3.5)

We choose this parameterization since all coordinates and ` can be assigned dimensions of

length. Near the conformal boundary, the coordinates φ and ψ become null. We would like

to determine the affinely parametrized geodesics xµ(λ) = (x(λ), φ(λ), ψ(λ)). To do so, we

notice that this geometry has Killing vectors ∂φ and ∂ψ, corresponding to translations in

φ and ψ, and these Killing vectors yield conserved quantities cφ = ẋ · ∂φ and cψ = ẋ · ∂ψ.

We will solve for the geodesics by using these conserved quantities and the affine constraint

cv = ẋµẋµ. This gives equations of motion

cφ =
xφ̇+ `ψ̇

4x
, (3.6)

cψ =
`φ̇

4x
, (3.7)

cv =
`2ẋ2 + xφ̇(xφ̇+ 2`ψ̇)

4x2
. (3.8)
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The solutions to these equations are given in Appendix A.1.

We want to compute the length of a geodesic beginning and ending near the conformal

boundary at xε ∼ ε2/`, where we have used the UV-IR relation to map our bulk IR cutoff

xε to a dual UV field theory cutoff ε [179, 171]. This follows from the quadratic relationship

between x and the usual Poincaré coordinate z near the conformal boundary, x ∼ z2. Since

we chose our geodesics to be affinely parametrized, we can use the solution x(λ) to solve for

the cutoffs ±λ∞ in the affine parameter defined by x(±λ∞) = xε. The regulated length is

then given by

Length =
√
cv

∫ λ∞

−λ∞
dλ = 2

√
cv λ∞, (3.9)

which at the end will be cv-independent, as required by parameterization-invariance of the

length. Writing down the leading divergence of λ∞ in terms of the conserved quantities cφ,

cψ and cv gives

λ∞ ≈
`

4
√
cv

log




cv `
√

4c2
φ − cv

4(cvcψ − 4cφ2cψ)

`

ε


 , (3.10)

we now attempt to trade the conserved quantities cφ and cψ for spatial separations on the

asymptotic boundary. This entails solving the equations

Lφ ≡ φ(λ∞)− φ(−λ∞) , Lψ ≡ ψ(λ∞)− ψ(−λ∞) , (3.11)

to zeroth order in λ∞ for cφ and cψ in terms of Lφ and Lψ. An important point about AdS3

solutions, which we state here to contrast with the warped AdS3 solutions of later sections,

is that the “non-radial” coordinates (in this case φ and ψ) asymptote to constant values

as the affine parameter diverges. In other words, one can safely take the limit λ∞ → ±∞

54



in either Lφ or Lψ. The solutions to the geodesic equations of motion have two primary

branches, which we call the “cosh-like” and “sinh-like” branches. We will consider the

“cosh-like” branch, defined by x(λ∞) = −x(−λ∞), although the “sinh-like” branch, defined

by x(λ∞) = x(−λ∞), can be handled analogously (see Appendix A.1 for details). Using

c = 3`/2GN , we find

SEE =
c

3
log

(
1

ε

√
Lψ ` sinh

(
Lφ
2`

))
. (3.12)

We will comment in the next section on what `, the curvature scale, is doing in a field-theory

formula. Given that the geometry we are considering is simply a coordinate transformation

of the usual Poincaré patch on AdS3, we could have gotten this answer by performing the ap-

propriate transformations on the usual Poincaré patch answer, (c/3) log(L/ε). This method

is easier since the Poincaré patch is globally static, allowing us to use the time-independent

proposal, and the geodesics are semicircles. To see how such an approach works, see Ap-

pendix B. We will increasingly rely on using such coordinate transformations as we begin

warping the spacetime in the later sections.

3.5.1 Interpretation

We can suggestively rewrite the answer for the entanglement entropy as

SEE =
c

3
log

√
Lψ ` sinh

(
Lφ
2`

)

ε
=
c

6
log

Lψ
ε

+
c

6
log

(
`

ε
sinh

(
Lφ
2`

))
. (3.13)

This answer looks like the ground-state answer in the ψ direction and the finite-temperature

answer in the φ direction, with the temperature being set by the curvature scale `. Recall

that φ and ψ are null coordinates on the conformal boundary, so these correspond to the

left- and right-movers.
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To investigate the dual state corresponding to this bulk geometry, we can write out the

bulk metric near the boundary in the Fefferman-Graham expansion [97]:

ds2 = `2

(
dρ2

4ρ2
+ hij(x

i, ρ)dxidxj
)
, hij(x

i, ρ) =
g

(0)
ij

ρ
+ g

(2)
ij + . . . . (3.14)

In general, the boundary metric g
(0)
ij determines the trace and covariant divergence of g

(2)
ij

through the equations of motion near the boundary as

tr g(2) ≡ g
(0)
ij g

(2)ij = −1

2
R[g

(0)
ij ], (3.15)

∇ig
(2)ij = ∇j tr g(2), (3.16)

where the covariant derivative is with respect to the metric g
(0)
ij . The expectation value of

the stress-energy tensor is then given by the variation of the renormalized on-shell action

with respect to g
(0)
ij [25, ?], which in two boundary dimensions turns out to be

〈Tij〉 =
`

8πG

(
g

(2)
ij − g

(0)
ij tr g(2)

)
. (3.17)

For the usual Poincaré patch, we identify g
(2)
ij = 0, so we see that 〈Tij〉 = 0. However, for

the Poincaré fibered coordinates, since g
(2)
φφ = 1/4 we have

〈Tφφ〉 =
`

32πG
=

c

48π
(3.18)

with all other components vanishing (the tracelessness of the stress-energy tensor is preserved

since g
(0)
φφ = 0). Thus, we are not in the vacuum state of the dual theory and should not have

expected to get the universal answer for the vacuum state, which in this case would have
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been

SEE =
c

3
log

√
LψLφ

ε
(3.19)

since lengths in the boundary metric are computed with ds2 = dφ dψ. In fact, we do get the

vacuum answer for the ψ-movers, which agrees with 〈Tψψ〉 = 〈Tψφ〉 = 0. The φ-movers are

in an excited state, which agrees with 〈Tφφ〉 6= 0. As it should, the bulk diffeomorphism that

takes one from Poincaré coordinates to Poincaré fibered coordinates induces a conformal

transformation on the boundary theory, and (3.18) is just what one obtains by conformally

transforming the vanishing stress-energy tensor from Poincaré coordinates to Poincaré fibered

coordinates.

Now that we have shown that the modes in the ψ direction are in their ground state

and the modes in the φ direction are excited, the expression for the entanglement entropy

is becoming a bit clearer. To make the finite-temperature interpretation more precise, we

consider the metric (3.5) with compactified fiber coordinate:

ds2 =
1

4

(
−`2dψ

2

x2
+ `2dx

2

x2
+

(
dφ+ `

dψ

x

)2
)
, φ ∼ φ+ 4πr+ . (3.20)

This is precisely the geometry that appears in a Penrose-like near-horizon limit of the ex-

tremal BTZ black hole

ds2 = −
(r2 − r2

+)2

r2`2
dt2 +

`2r2

(r2 − r2
+)2

dr2 + r2

(
dφ−

r2
+

`r2
dt

)2

, (3.21)

which has dimensionless J = M =
2r2+
`2

and S = 4πr+ in units where 8G = 1. Defining

left-moving and right-moving energies as

EL ≡M − J = 0, ER ≡M + J, (3.22)
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and dimensionless left-moving and right-moving temperatures as

TL ≡ `
∂EL
∂S

= 0 , TR ≡ `
∂ER
∂S

=
r+

π`
, (3.23)

we see that the state dual to the background (3.5) is at zero left-moving temperature and

finite right-moving temperature. Though it is at zero Hawking temperature, the statistical

degeneracy is explained by the Cardy formula and the nonvanishing right-moving tempera-

ture:

S =
π2

3
(cLTL + cRTR) =

π2

3

3`

2GN

r+

π`
= 4πr+ , (3.24)

which matches the area of the horizon in coordinates (3.20) or (3.21). We have used 8GN = 1

to get to the final expression.

Notice that our answer (3.13) applies for the geometry with compact fiber coordinate

(3.5) as long as we consider small Lφ. With the thermodynamic language developed above,

we can define φ̃ = φ/(2r+), ψ̃ = r+ψ/π` = ψ/βR and rewrite the second piece in (3.13) as

c

6
log

(
`

ε
sinh

(
Lφ
2`

))
−→ c

6
log

(
βR
ε

sinh

(
π Lφ̃
βR

))
, (3.25)

where φ̃ ∼ φ̃ + 2π and the first term in (3.13) remains unchanged. The UV-IR relation is

fixed to match onto the ground state answer in the limit of small Lφ̃. So we have seen that

the entanglement entropy answer for the geometry with a compact fiber coordinate reflects

the fact that the right-movers are at finite right-moving temperature.

We pause for a moment to connect to an existing result in the literature, which is the

calculation of entanglement entropy in the state dual to the rotating BTZ black hole [134].
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Taking the extremal limit of their result, βR →∞, one finds

SEE =
c

6
log

L

ε
+
c

6
log

(
βR
ε

sinh

(
πL

βR

))
(3.26)

for purely spatial separation on the boundary. This is precisely our answer with Lφ̃ = Lψ̃ =

L. It seems that the IR limit we have taken to get to the geometry (3.20) has retained the

entangling properties of the dual state.

Now we would like to take the limit where the geometry decompactifies, i.e. r+/`→∞,

since this allows us to recover our original geometry (3.5). Notice that in this limit, we are

going from having two scales, ` and r+, to just one scale `. Thus, all dimensionful parameters

must be measured relative to `.4 Looking at the left-hand-side of (3.25), we see that this

means that the argument of the sinh must remain fixed in this limit, since we want to keep

Lφ (in units of `) fixed. Expressed in terms of the CFT quantities on the right-hand-side of

(3.25), we are taking βR small with Lφ̃/βR fixed. We therefore retain the interpretation of

the right-movers being at finite temperature in the decompactification limit. With compact

fiber coordinate, the expression (3.13) can be understood in relation to the DLCQ limit

which freezes the ψ-movers to their ground state [24].

To aid with understanding taking arbitrary spacelike slices, we note here that the expres-

sion for the length of an extremal geodesic in the rotating BTZ background for arbitrary

spacelike separation on the boundary can be written:

SEE =
c

6
log

[
βLβR
π2ε2

sinh

(
π∆xL
βL

)
sinh

(
π∆xR
βR

)]
(3.27)

=
c

6
log

[
βL
πε

sinh

(
π∆xL
βL

)]
+
c

6
log

[
βR
πε

sinh

(
π∆xR
βR

)]
(3.28)

for xL = φ+ t and xR = φ− t. Again, the contribution to the entanglement entropy splits up

4The role of the lattice spacing ε will not be important for this argument.
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into distinct contributions from the left- and right-moving sectors. This is analogous to how

the contribution to the thermodynamic entropy splits into left- and right-moving sectors in

the Cardy formula.

3.6 Global fibered AdS3

The global fibered AdS3 metric is obtained by setting a = 1 in (3.1) to obtain

ds2 =
`2

4

(
−(1 + r2) dτ 2 +

dr2

1 + r2
+ (du+ r dτ)2

)
. (3.29)

All coordinates are dimensionless while ` has dimensions of length. The coordinates u and

τ become null near the part of the boundary reached by r → ±∞, which is the region to

which we shall restrict our attention; see Figure 3.1 for the precise parameterization of the

boundary cylinder in these coordinates. One can write conservation equations for affinely

parameterized geodesics just like in the Poincaré fibered case. In this case, we label the

conserved quantities corresponding to translations in τ and u by cτ and cu respectively,

while cv = ẋµẋµ. After some manipulation, the conservation equations can be written as

follows:

ṙ2 =

(
cv

(`/2)2

)
r2 −

(
2cucτ
(`/2)4

)
r − c2

u − c2
τ − (`/2)2cv
(`/2)4

, (3.30)

τ̇ =
cu

(`/2)2

r

r2 + 1
− cτ

(`/2)2

1

r2 + 1
, (3.31)

u̇ =
cτ

(`/2)2

r

r2 + 1
+

cu
(`/2)2

1

r2 + 1
. (3.32)

Imposing the condition cv > 0 ensures that the geodesics determined by these equations

are spacelike. For equation (3.30), there are “cosh-like” and “sinh-like” solution branches

according to whether c2
u − cv(`/2)2 > 0 and c2

u − cv(`/2)2 < 0, respectively. The solutions
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are presented in Appendix A.2.

We now wish to calculate the leading divergent piece of the length of these geodesics.

The approach is identical to the previous section, so we will not repeat the details here.

Using the UV-IR relation r∞ ∼ ε−2 for dimensionless cutoff ε, we find

λ∞ ≈
(`/2)
√
cv

log

(
cv(`/2)2

√
(c2
u − cv(`/2)2)(c2

τ + cv(`/2)2)

1

ε2

)
. (3.33)

We can now trade in the conserved quantities cu and cτ for coordinate separations Lu and

Lτ on the boundary and recover

SEE =
c

3
log

(
1

ε

√
sin

(
Lτ
2

)
sinh

(
Lu
2

))
. (3.34)

We will stick to Lτ < 2π on the boundary to maintain spacelike separation between the

two endpoints (τ is a null coordinate that winds up the cylinder). Just as in the Poincaré

fibered case (3.12) we see that the u-moving sector seems to be at finite temperature, with

the temperature scale set by ` (recall that our coordinate u is dimensionless), while the τ -

moving sector is in its ground state. The appearance of the sine function is simply from the

compact U(1) of the global AdS3 cylinder. One can perform a Fefferman-Graham analysis

by repeating the steps of Section 3.5.1, but the details are the same and we omit them here.

The result for the “sinh-like” branch is similar:

SEE =
c

3
log

(
1

ε

√
cos

(
Lτ
2

)
cosh

(
Lu
2

))
. (3.35)

Notice that the length remains well-defined when Lu → 0 and Lτ → 0, as it should since

the geodesic is going through the bulk from r = −∞ to r = ∞ in this limit. We mention

this branch due to its relevance to the metric (3.1) with compact fiber coordinate. This

is the self-dual orbifold considered first in [73] and studied extensively in [24, 27]. The
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geometry is locally AdS3 and has an AdS2 factor, but a compact fiber coordinate causes

the two boundaries at r = +∞ and r = −∞ to become disconnected, though they are

causally connected through the bulk. The entanglement between the asymptotic boundaries

was computed via a reduction to AdS2/CFT1 in [20]. Our answer can be used to compute

quantities like the holographic thermo-mutual information (HTMI) in these horizon-less

backgrounds, as defined in [159], directly in AdS3.

3.7 Spacelike WAdS3

We have seen in the previous sections how to apply the covariant HRT proposal to locally

AdS3 spacetimes written as a real-line fibration over AdS2. The results agree with the

universal CFT2 answers for a state at zero left-moving temperature and finite right-moving

temperature. We now move on to the case of nontrivial warping. We will set up the problem

with general warping parameter a 6= 1 and only specify our peturbative expansion about

AdS3 with a = 1 + δ at a later point in our analysis.

3.8 Global coordinates analysis

We consider the metric (3.1), and we determine the affinely parameterized geodesics xµ(λ) =

(τ(λ), u(λ), r(λ)) in this geometry. The metric has Killing vectors ∂τ and ∂u corresponding

to translations in τ and u, and they yield conserved quantities cτ = ẋ · ∂τ and cu = ẋ · ∂u,

respectively. Since we consider affinely parameterized geodesics, the square speed cv = ẋµẋµ
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along the geodesic is also conserved. The corresponding conservation equations are

cτ = (`/2)2
(
a2r (rτ̇ + u̇)−

(
r2 + 1

)
τ̇
)
, (3.36)

cu = (`/2)2a2 (rτ̇ + u̇) , (3.37)

cv =
(`/2)2

[
− (r2 + 1)

2
τ̇ 2 + a2 (r2 + 1) (rτ̇ + u̇)2 + ṙ2

]

r2 + 1
. (3.38)

To solve these equations, it helps to manipulate them into the following form:

ṙ2 = −
(
c2
u(1− a2)− (`/2)2a2cv

(`/2)4a2

)
r2 −

(
2cucτ
(`/2)4

)
r − c2

u − a2c2
τ − (`/2)2a2cv

(`/2)4a2
, (3.39)

τ̇ =
cu

(`/2)2

r

r2 + 1
− cτ

(`/2)2

1

r2 + 1
, (3.40)

u̇ =
cτ

(`/2)2

r

r2 + 1
+

cu
(`/2)2a2

1

r2 + 1
+

cu
(`/2)2

(
1− a2

a2

)
r2

r2 + 1
. (3.41)

Equation (3.39) is now a decoupled, separable differential equation that can be integrated to

determine r(λ). The solution to (3.39) can then be plugged into equations (3.40) and (3.41),

which can be integrated to obtain τ(λ) and u(λ), respectively. Notice also that setting a = 1

in these equations gives the system of equations (3.30), (3.31), and (3.32). The equations

become a-independent in the limit cu = 0, though such a limit does not seem particularly

useful for understanding warped AdS3; see Appendix A.3.1. The general solutions to these

equations can be found in Appendix A.3. We simply note here that the solution for u(λ)

has a piece that grows linearly with λ, unlike in the AdS3 case. This means that the relation

between cu and Lu will necessarily involve λ∞. This complicates the analysis, as we shall see

shortly.

Let us focus on the “cosh-like” branch with 0 < a < 2 and fix cv = 1. This includes the

squashed and stretched cases. In our approach, we first write the length of the geodesic in
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terms of the conserved quantities and the cutoff in the holographic coordinate r:

λ∞ =
1
√
c1

cosh−1

[
−c2 + 2c1r∞√
c2

2 + 4c1c3

]
, (3.42)

where we have used the definitions in (A.17) and require c1 > 0. This expression holds for

general warping a as well as for the AdS3 case of a = 1 (the a-dependence is buried in c1

and c3). Taking c1r∞ � c2 and restoring the original constants of motion cu and cτ gives5

λ∞ ≈
log

[
c1r∞√
c22+4c1c3

]

√
c1

=

log

[
r∞

a2(1+c2u)−c2u√
(−a2+c2u)(a2(1+c2τ+c2u)−c2u)

]

√
1 + (1− 1/a2)c2

u

, (3.43)

where we have set cv = `/2 = 1. Although the geodesic equations for r(λ), τ(λ), and

u(λ) are soluble, to write the answer for the length in terms of coordinate separations on

an asymptotic boundary (instead of in terms of conserved quantities as done above) there

remains the task of inverting limits of those solutions to obtain the conserved quantities cu

and cτ in terms of separations on the boundary Lu and Lτ . The equation for the τ coordinate

is simply generalized from the AdS case:

cτ =
√
c1 cot

(
Lτ
2

)
=

√
c2
u(a

2 − 1) + a2

a2
cot

(
Lτ
2

)
, (3.44)

which holds as long as Lτ < π. The new feature in these spacetimes, which is different from

asymptotically AdS spacetimes, is that the relation between cu and Lu involves λ∞:

2

(
−1 +

1

a2

)
cuλ∞ + log


cu +

√
1 + c2

u −
c2u
a2

cu −
√

1 + c2
u −

c2u
a2


 = Lu . (3.45)

In other words, one cannot keep both cu and Lu fixed as the cutoff is scaled large. This

5One cannot in general be so cavalier in taking c1r∞ � c2 without any restrictions on Lu, since c2 depends
on cu, which depends on λ∞. In our case, however, this can be consistently realized by taking r∞ � 1.
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follows directly from the linear divergence of u(λ) with λ, as would occur in an AdS2 × R

background. One could at this point try to proceed by solving for cu in terms of Lu and λ∞

and plug cu and cτ into (3.43). This would then be an equation for λ∞ that can be solved

to determine the length. Unfortunately, such an approach has two obstacles, one conceptual

and one technical. The conceptual obstacle is that this would correspond to fully applying

the HRT proposal in an asymptotically warped AdS3 spacetime, and it is unclear whether

such a prescription makes sense. The technical obstacle (at least in this approach) is that

(3.45) is a transcendental equation for cu. In the case of AdS2 × R, which can be realized

as the a → 0 limit of warped AdS3, the left-hand-side of the analog of (3.45) has only the

piece linear in λ∞ and such a method can be carried out.

In the next section, we will show that setting up a perturbative expansion about the

AdS3 point by considering warping parameter a = 1 + δ will allow us to solve this equation

order-by-order in δ.

3.9 Perturbative entanglement entropy

Given that a nonperturbative application of the HRT prescription to asymptotically warped

AdS3 spacetimes is suspect, here we will try to infinitesimally perturb around the AdS3 point

and use the AdS/CFT dictionary, which presumably contains as one of its entries the HRT

prescription. Deep in the IR, the geometry (3.1) is close to AdS3, and it is only in the UV

that the nontrivial warping parameter begins to destroy the asymptotics. If we cut off our

spacetime before this happens, then we are at low enough energies where our analysis will be

on firmer ground. Viewed in this way, we have a conformal field theory which we perturb by

an infinitesimal, irrelevant operator. Holographic renormalization can then be understood

perturbatively in this infinitesimal source [182, 183]. We will find that in a certain limit we

can sum the perturbative expansion to all orders. The resulting answer takes the precise
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form of a two-dimensional CFT and reproduces the warping-dependent central charge and

left- and right-moving temperatures postulated previously in the literature.

3.10 Perturbative expansion

We imagine that the warping parameter is close to 1, i.e. a = 1 + δ for |δ| � 1. It is in this

sense which we expand about the AdS3 point a = 1. Such a perturbative expansion will help

us solve (3.45) for cu order-by-order in δ. The solutions below follow a simple pattern at

each order, and though we list the general formulae for arbitrary order, we have technically

only checked that they are true to tenth order. Expanding

cu = cu,0 + δ cu,1 + δ2cu,2 + · · · , (3.46)

we solve (3.45) to get

cu,0 = (`/2) coth
Lu
2
, (3.47)

cu,1 =
1

2
((`/2)− 4λ∞ + (`/2) coshLu) coth

Lu
2

csch2Lu
2
, (3.48)

cu,n =

(
n−1∑

j=0

n∑

i=0

λi∞(`/2)n−ik(n)
ij cosh(jLu)

)
coth

Lu
2

csch2nLu
2

; n > 1 , (3.49)

where the k
(n)
ij are calculable n- and λ∞-dependent constants. We require |δn cu,n| �

|δn−1cu,n−1| to assure convergence of our perturbative expansion. This can be satisfied by

taking

Lu & 1 , |λ∞ δ| � 1 . (3.50)
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Lu is being measured in units of `. The latter condition ensures that we stay in an AdS3-

like part of the geometry and not get into the WAdS3 asymptotic. Notice that from the

point of view of perturbing about AdS3, this is an eminently sensible condition; regardless

of how small one takes δ, the geometry looks wildly different from AdS3 for sufficiently large

λ∞, so we need to constrain their product. Incidentally, the curvature invariants of WAdS3

are all finite and continuously connected to the AdS3 case a = 1, so they are not a good

way to classify where to cut off the spacetime for a well-defined perturbation theory. When

computing the length, we keep only the leading divergent piece (in r∞) at each order. This

gives the following result for the entanglement entropy:

SEE =
`

4GN

[(
1 + δ coth2Lu

2

)
log

(
r∞ sin

Lτ
2

sinh
Lu
2

)]
+

`

4GN

∞∑

i=2

δi (−1)i+1coth2Lu
2

csch2(i−1)Lu
2

[
log

(
r∞ sin

Lτ
2

sinh
Lu
2

)]i( i−2∑

j=0

cij cosh(jLu)

)
.

(3.51)

The constants cij are all positive. Notice that the zeroth order piece is precisely the answer

for AdS3 given in (3.34), as it should be. Unfortunately, the series does not seem simply

summable unless we take the scaling limit Lu � 1, in which case we use our knowledge of

the cij and sum the series to get

SEE =
`

4GN

[
(1 + δ) log

(
r∞ sin

Lτ
2

sinh
Lu
2

)]
−

`

4GN

e−Lu
[
−1 + 4δ log

(
r∞ sin

Lτ
2

sinh
Lu
2

)
+ e−4δ log(r∞ sin Lτ

2
sinh Lu

2 )
]

(3.52)

to leading order in Lu. Notice that the first two terms in the second line are suppressed by a

factor of e−Lu relative to the first line and can safely be dropped. Up to an overall constant,
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the last term in the second line can be written as

(
sin

Lτ
2

)−4δ (
r−4δ
∞ e−Lu(1+2δ)

)
. (3.53)

For δ > 0, this is suppressed relative to the first line without further qualification and can

be dropped. For δ < −1/2, this term grows with Lu and cannot be neglected. However, for

−1/2 < δ < 0, there is a competition between the factor containing r∞ ∼ eλ∞ � 1 and the

factor containing Lu � 1. In this regime, for a given δ and r∞, one simply needs to choose

Lu sufficiently large (Lu(1 + 2δ)� −4δλ∞) such that the resulting expression is dominated

by the expression in the first line.

By combining these observations, we find that if δ > −1/2, then the leading behavior of

the entanglement entropy in the large-Lu regime is

SEE =
`

2GN

(1 + δ) log

(
1

ε

√
sin

Lτ
2

exp

(
Lu
2

))
, (3.54)

where we have used the UV-IR relation r∞ ∼ 1/ε2. Since we are sourcing an infinitesimal

irrelevant operator and computing perturbatively, the UV-IR relation used should remain

that of AdS/CFT. We have also replaced the hyperbolic sine function with an exponential

function, since corrections are subleading in our expansion in e−Lu . As usual, numerical

factors are absorbed into a redefinition of the cutoff ε.

We see that for a = 1 + δ, the perturbative expansion in the large-Lu gives simply the

two-dimensional CFT answer of (3.34) upon identifying the coefficient of the logarithm with

c/3:

cL = cR =
3`

2GN

(1 + δ) . (3.55)

The equality of cL and cR is due to a lack of diffeomorphism anomaly, since we are working
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in Einstein gravity. These are precisely the central charges of [12], conjectured by demanding

consistency with the Cardy formula (we will reproduce this check in Section 3.14).6 One of

these central charges has been produced through an asymptotic symmetry group analysis

[69]. Identifying the functional form of SEE with the AdS3 result (3.34) allows us to conclude

that the dual state lives on a cylinder charted by null coordinates τ and u.

It is important to keep in mind that the entanglement entropy computed in (3.54) is

understood as an expansion to zeroth order in e−Lu but to all orders in δ. This approach can

in principle be extended to lower orders in Lu, and the appearance of the logarithmic term in

our general formulae suggests that the answer will remain roughly in the form of the CFT2

answer, except the logarithm will have an Lu-dependent prefactor. This is consistent with

the existence of a single Virasoro algebra, since it seems the answer only picks up additional

u-dependence while keeping the τ -dependence the same. Our result at leading order in e−Lu

seems to suggest that warped CFTs behave like ordinary CFTs in the IR, for large Lu. The

IR restriction is due to cutting off our spacetime deep in the bulk and is independent of the

large Lu restriction. The similarity to CFT2 jibes well with the fact that the deep interior

of the WAdS3 geometry is AdS3-like. We will discuss the physical meaning of large Lu in

Section 3.13. We will also go beyond the small warping limit in Section 3.14 by arguing that

warped CFTs are CFT-like generally, as long as one takes an infrared limit and studies large

Lu.

Performing the same perturbative expansion in the case of Poincaré coordinates would

give a result that can be obtained simply by coordinate transforming our current answer as

6To facilitate comparison with the notation of [12], one should take a2 → β2 and `2 → (4 − β2)`2/3.
Notice that as β2 → 4, which is the limit in which the central charge of [12] vanishes, there is an infinite
rescaling that allows our central charge to remain finite.
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in Appendix B.2, and it is given by

SEE =
`

2GN

(1 + δ) log

(
1

ε

√
Lψ` exp

(
Lφ
2`

))
. (3.56)

This is again the appropriate answer at large Lφ for a two-dimensional CFT, now on the

Minkowski plane charted by null coordinates φ and ψ, as presented in (3.12). Taking the

fiber coordinate Lu large in the global coordinate system corresponds to taking the fiber

coordinate Lφ large in Poincaré coordinates. In the case of Poincaré coordinates, however,

we can simultaneously take Lψ large if we want to consider a particular time slice Lφ = Lψ.

Due to the convergence of the perturbative expansion for any warping parameter a > 1/2

in the large fiber-coordinate regime, we conjecture that the nonperturbative answer for the

entanglement entropy for a state at zero left-moving temperature and finite right-moving

temperature, in the large fiber-coordinate regime, is given by (3.56) for a state on the plane

or (3.54) for a state on the cylinder. We will expound on this conjecture in Section 3.14

after providing some more evidence for our approach. However, we will henceforth use the

nonperturbative parameter a in our formulae.

3.11 Finite temperature

In the limit of large separation in the fiber coordinate, we can match our results with those

of two-dimensional CFT even at finite temperature. Since black holes in warped AdS3 are

given by discrete quotients of the vacuum spacetime, they are locally warped AdS3 [16].

This is analogous to BTZ black holes in AdS3. Due to the local equivalence, we can exhibit

local coordinate transformations that take us from the geometry with a black hole to the

geometry without a black hole. We will stick to the stretched case a > 1 to avoid closed
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timelike curves. The metric for the warped BTZ black hole is given by

ds2

`2
=

3dt2

4− a2
+

dr2

4(r − r+)(r − r−)
+

6
√

3

(4− a2)3/2
(ar −√r+r−) dtdθ

+
9r

(4− a2)2

(
(a2 − 1)r + r+ + r− − 2a

√
r+r−

)
dθ2 . (3.57)

We will restrict to the stretched case a > 1 to avoid the presence of closed timelike curves

at large radial coordinate. The answer for the entanglement entropy in a warped BTZ back-

ground can be reproduced by coordinate transforming our previous answer. The coordinate

transformations can be found in Section 5 of [16]. Performing such a transformation to

(3.54), we find

SEE =
`a

GN

log

(
r+ − r−
ε2

exp

(√
3

a2(4− a2)
∆t+

π∆θ

βL

)
sinh

π∆θ

βR

)
, (3.58)

with dimensionless temperatures

β−1
L = TL =

3

2π(4− a2)

(
r+ + r− −

2

a

√
r+r−

)
, (3.59)

β−1
R = TR =

3(r+ − r−)

2π(4− a2)
. (3.60)

Due to the compactification of θ, there can exist many spacelike geodesics in this geometry,

distinguished by their winding number and directionality. The expression ∆θ refers to the

separation in a noncompact θ, i.e. without modding by 2π. We can ignore the global

topology by considering ∆θ � 2π. This is consistent with the large-Lu limit taken in the

previous section, since that limit can be accomodated by taking ∆t large. Adding winding

will only increase the length of the geodesic,7 so we see that our answer is valid in the regime

considered.

7Note that this would be more subtle if we considered the squashed case a < 1, since for large enough r
winding in θ corresponds to a timelike direction and can decrease the length of the geodesic.
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In the case of AdS3 with a = 1, the coordinates are such that one picks a constant-time

slice by requiring ∆t = 0. It is important to note that this case corresponds to the BTZ black

hole in a rotating coordinate system, and our answer for a = 1 is the universal CFT2 answer

for such a dual state. Since we are using a rotating coordinate system, it is not necessary

that the functional form of our answer precisely match the form of (3.28). The parameters

βL and βR give the inverse left-moving and right-moving temperatures of the BTZ black

hole in this frame, and we see that this match extends to the warped BTZ case as well; the

dimensionful temperatures (3.59) and (3.60) match precisely with those of [16]. In Section

3.14 we will show that these temperatures, combined with the central charge (3.55), satisfy

the Cardy formula. Finally, implementing an appropriate homology constraint suffices to

reproduce the thermodynamic black hole entropy in the limit where we consider the entire

boundary density matrix without tracing out any degrees of freedom.

3.12 A vacuum state proposal

We have produced the universal CFT results for states dual to spacelike warped AdS3 and the

warped BTZ black hole. However, as our formulae in the previous sections illustrate, none

of these states can be considered the vacuum state. The proposal in [80] is that the timelike

warped AdS3 geometry is a suitable candidate for the vacuum state in both topologically

massive gravity and a specific string theory example that reduces to Einstein gravity plus

matter. The proposed vacuum geometry (which is in fact Gödel space) can be written as

ds2

`2
= − 3dt2

4− a2
+

3dr2

4r(4− a2 + 3r)
− 6ar

√
3

(4− a2)3/2
dtdθ +

3r(4− a2 − 3r(a2 − 1))

(4− a2)2
dθ2 , (3.61)

where θ is a compact coordinate with θ ∼ θ + 2π. For a2 > 1 this geometry has closed

timelike curves for r > (4−a2)/3(a2− 1) (see [151, 29] for a discussion). In our perturbative
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approach, we can take r∞δ � 1, which is sufficient to excise the region with closed timelike

curves. Notice that we can get to this geometry by taking the warped BTZ black hole (3.57)

and performing the identifications

r+ = 0, r− =
a2 − 4

3
, t→ it, θ → iθ . (3.62)

If we replace the exponential function in (3.58) with a hyperbolic sine (i.e. start with a

precise match to 2D CFT instead of a match only at large fiber coordinate), then we can

perform these identifications on the entanglement entropy result to get, for ∆t = 0,

SEE =
`a

2GN

log

(
sin(Lθ/2)

ε

)
. (3.63)

We see that this is the ground state answer for a two-dimensional CFT on a cylinder with a

compact spatial coordinate θ. Unfortunately, this is merely illustrative because it runs afoul

of the requirement of large fiber-coordinate separation. The correct way to get the answer

in our framework is to keep the entire expression (3.51) and perform the identifications

necessary to get to timelike warped AdS. From here, there does not appear to be a sensible

regime in which the series can be summed and reduces to a two-dimensional CFT answer.

3.13 The geometric meaning of large fiber-coordinate

separation

We now discuss the meaning of the limit of large fiber-coordinate separation Lφ on a field

theory calculation of entanglement entropy. Note that the limit is not necessarily a restriction

on the spatial size, (LφLψ)1/2, for which our result holds.8 The different spatial sizes lie on

8Here we are referring to spacelike warped AdS3 in Poincaré coordinates (3.2), where the fiber coordinate
is denoted by φ, and there is no restriction on the separation in the other coordinate ψ. The dual state is

73



spacelike slices boosted with respect to one another. For example, large spatial sizes are

accommodated by taking Lψ ∼ Lφ, which results in a “mostly spacelike” slice, whereas

small spatial sizes are accommodated by taking Lψ small, which makes the slice more null.

Nevertheless, imposing large Lφ without constraining the system size does impose a physical

restriction on the reduced density matrix. Unlike the case of the vacuum state on the

Minkowski plane, there is no Lorentz symmetry relating the different observers on their

different spacelike slices. In the case of spacelike warped AdS3, our result for SEE exhibits

that there is a finite right-moving temperature turned on, which breaks Lorentz invariance.

In the case of warped BTZ black holes, there is also a finite left-moving temperature. Thus,

Lorentz transformations connecting different observers act nontrivially and lead to a different

reduced density matrix. On the other hand, for the vacuum state on the plane the answer

can be boosted and replaced with the invariant Minkowskian interval, as shown in (3.4).

The entanglement entropy in this case is only sensitive to the length of the spatial interval

and not the orientation of the spatial slice, whereas when Lorentz invariance is broken it is

sensitive to both.

3.14 Nonperturbative conjecture

We have seen that the perturbative series we constructed converges for a > 1/2 in the large

fiber-coordinate regime. Recall that the physically relevant range is a ∈ [0, 2), so we fail to

capture part of the parameter space. The region a ∈ [0, 1/2) includes the interesting case of

AdS2×R, which can be reached by taking a→ 0 and rescaling the fiber coordinate u→ u/a

in (3.1).

The convergence of our series seems to suggest that our results for the entanglement

entropy hold nonperturbatively in the warping. We conjecture this to be true. This claim

on the Minkowski plane and has finite right-moving temperature.
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requires a UV-IR relation of the form r∞ ∼ 1/ε2 to hold nonperturbatively. In our perturba-

tive approach we could make use of this UV-IR relation since we were working in the context

of AdS/CFT, where it is known to be true. Extending the requirement into the nonper-

turbative regime is a natural choice. With it, we claim that our perturbative expansion is

sufficient to capture the nonperturbative dynamics entering into the entanglement entropy.

A nontrivial check on this nonperturbative proposal is the Cardy formula. Our answers

for SEE allow us to read off left-moving and right-moving temperatures and the central

charge. We now claim that all these results hold nonperturbatively. The central charge is

given universally as

cL = cR =
3`a

2GN

. (3.64)

For the warped BTZ black hole, our proposal allows us to identify the left-moving and right-

moving temperatures as (3.59) and (3.60) nonperturbatively in a. These temperatures and

the central charge reproduce the entropy of the warped BTZ black hole through the Cardy

formula:

S =
A

4GN

=

(
3π`

2GN(4− a2)
(ar+ −

√
r+r−)

)
=
π2

3
(cLTL + cRTR). (3.65)

3.15 Summary and outlook

We have taken the first steps toward understanding holographic entanglement entropy in

the context of asymptotically warped AdS3 spacetimes in Einstein gravity. We began by

considering AdS3 as a real-line fibration over AdS2, a coordinate system relevant to the

study of extremal black holes. The calculation of the entanglement entropy indicated a state

at zero left-moving and finite right-moving temperature, as expected.

Deforming the fibration by a nontrivial warp factor leads to the warped AdS3 geometries,
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appearing in the near-horizon limit of extremal Kerr black holes at constant polar angle. To

connect with the HRT proposal in AdS/CFT, we constructed a perturbation theory about the

AdS3 point with trivial warping. For a = 1 + δ, one can compute the length of the necessary

geodesic perturbatively in δ to all orders. The general answer is not particularly illuminating,

except in the limit of large separation in the fiber coordinate. Recall that the U(1) isometry

originating from translation invariance in the fiber coordinate is what is expected to enhance

to an infinite-dimensional U(1) Kac-Moody algebra in the boundary theory. In this limit, the

answer takes the universal form predicted by two-dimensional CFT. Interpreting our answer

as a CFT answer allows us to read off the purported central charge of the dual theory, which

is given by c = 3`a/2GN . Since we are working in Einstein gravity, there is no diffeomorphism

anomaly and cL = cR = c. Furthermore, heating up the dual state with a warped BTZ black

hole in the bulk again leads to universal two-dimensional CFT answers, with the left- and

right-moving temperatures appearing appropriately in the entanglement entropy. Altogether,

the central charge and left- and right-moving temperatures identified in this way satisfy the

Cardy formula and thus reproduce the black hole entropy in the bulk. The central charge

we have identified from the entanglement entropy calculation has been previously produced

in the literature [12] by demanding consistency with the Cardy formula. Our approach

implements the covariant holographic entanglement entropy proposal and consistency with

the Cardy formula is instead a promising output. Taking our results at face value, they

seem to suggest that warped CFTs behave like ordinary CFTs in the IR; this matches the

intuition garnered from asymptotically warped AdS3 spacetimes in holography, since their

deep interiors are AdS3-like for small warping. Our perturbative expansion also shows that

there exists nontrivial fiber-coordinate dependence at subleading order in the separation

of the fiber coordinate, suggesting that the full theory is not a standard conformal field

theory. How to implement a proposal for holographically computing entanglement entropy

in asymptotically warped AdS3 spacetimes, without taking an IR limit, remains an open
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question.

The most immediate way one can make progress on the questions discussed in this paper

is by studying the constraints of warped CFT on field-theoretic calculations of entanglement

entropy. It has been shown in [80] that warped conformal invariance is strongly constraining

and allows one to reproduce a Cardy-like formula for the asymptotic growth in the density

of states by using the modular covariance of the partition function. As shown in [130], the

calculation of entanglement entropy in the vacuum and finite-temperature states of two-

dimensional CFT can be conformally mapped to the calculation of a partition function.

The constrained form of the partition function then allows one to write down the universal

formulas for two-dimensional CFT. Such a procedure may prove fruitful in the case of warped

CFTs as well, although one of the primarily difficulties is due to warped CFTs not having

natural Euclidean descriptions. Obtaining a universal entanglement entropy formula for

simple states of warped CFTs will allow one to determine if our holographic results are

indicating the existence of a second hidden Virasoro algebra or if the infinite-dimensional

U(1) is sufficient to constrain the answers in the way we have presented.

It is also interesting to see how far the analogy with two-dimensional CFT can be taken.

For example, it is possible that for large separation in the U(1) coordinate, with an appro-

priate IR limit, the field-theoretic calculation of entanglement entropy in a warped CFT

reproduces the CFT result. A simpler question is the constraint on correlation functions: it

can be shown [129] that left-translation invariance, left-scale invariance, and right-translation

invariance constrain the vacuum two-point function of local operators φi to be of the form

〈φi(x−, x+)φj(y
−, y+)〉 =

fij(x
− − y−)

(x+ − y+)λi+λj
, (3.66)

where λi is the weight of the operator φi. Furthermore, the symmetries are automatically

enhanced to an infinite-dimensional left-moving U(1) Kac-Moody algebra and a left-moving
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Virasoro algebra. If the analogy to two-dimensional CFT is to be taken seriously, these

symmetries should provide a constraint on fij such that in the limit of large separation

x−−y− and in an appropriate infrared regime the answer reduces to that of two-dimensional

CFT. Even if this simplification occurs, however, it does not imply that the theory can be

described by an ordinary two-dimensional CFT in this regime. The entanglement entropy in

the states we have considered and the vacuum two-point function give limited information

about the theory and do not elucidate its full dynamics.

Another home for the study of warped AdS3 and warped BTZ black holes is topologically

massive gravity, a higher curvature theory of gravity. There has been some work on extending

the holographic entanglement entropy proposal to this theory [177], although as far as we

are aware no manifestly successful proposal has been put forth. Indeed, accomodating the

diffeomorphism anomaly seems nontrivial. Nevertheless, since the bulk theory is three-

dimensional we expect the analysis to be analytically tractable. Given our study of finite-

temperature solutions, it is clear that a proposal for topologically massive gravity which

reproduces the CFT2 answer for empty, warped AdS3 will also reproduce the correct answer

for the warped BTZ black hole, as shown in Section 3.11.

We have seen that the method of holographically computing entanglement entropy, de-

vised in AdS/CFT, can be adapted to the case of warped AdS3 holography. It provides

further evidence that a sharp holographic correspondence can be developed in this context.

The perturbative approach we implemented may be a promising way to study entangle-

ment entropy in more general spacetimes continuously connected to AdSd+2. It can also be

adapted to the NHEK geometry, where one would like to independently deduce cL = 12J .
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Chapter 4

A higher spin Lifshitz black hole

In the past few years there has been a renewed interest in higher spin gravity in various

dimensions following the work of Vasiliev and collaborators (see [187] for a review). In the

present paper we focus on higher spin theories in three spacetime dimensions. Gaberdiel and

Gopakumar proposed a duality of the two dimensional WN minimal model CFTs to three

dimensional Vasiliev theory [103]. The original proposal has passed many checks and some

refinements in recent years, see e.g. [106, 105, 104, 52, 54, 11, 166, 128]. An interesting feature

of the three dimensional Vasiliev theory [169] is that while it is a complicated nonlinear theory

coupling an infinite tower of higher spin fields to scalar matter, if the scalars are linearized, the

theory can be reformulated in terms of a Chern-Simons theory with an infinite dimensional

gauge algebra hs(λ)× hs(λ) [41, 37, 168]. The deformation parameter λ is associated with

the ’t Hooft coupling of the dual CFT [103]. The Chern-Simons theory simplifies if λ = ±N ,

where N is an integer and the theory reduces to Chern-Simons theory with gauge group

SL(N,R)×SL(N,R) and is purely topological, corresponding to a theory of massless fields of

spin 2, 3, · · · , N . Note that Einstein gravity with negative cosmological constant is included

by taking N = 2 [189, 1].

The simplest solutions of the Chern-Simons theory correspond to AdS3 vacua. The
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asymptotic symmetry of the AdS vacuum in SL(N,R) × SL(N,R) higher spin gravity de-

pends on the embedding of a SL(2,R) sub-algebra in SL(N,R). For the principal embedding

one obtains WN symmetry [49, 126], whereas for non-principal embeddings other higher spin

algebras such as W
(2)
N can occur [9, 48].

The construction of black holes in AdS/CFT is important since (large) black holes de-

scribe the dual CFT in thermal equilibrium at finite temperature. The BTZ solution [31] of

three dimensional gravity has been a very important part of exploring the AdS/CFT corre-

spondence (see [143] for a review). In higher spin theories the definition of what constitutes

a black hole is nontrivial since the metric field transforms under higher spin gauge trans-

formations [49] and hence the standard geometric characterization of a black hole, i.e. the

existence of a horizon is not gauge invariant. In [120] a new criterion was proposed which

uses the holonomy of the Chern-Simons gauge field around the contractable euclidean time

circle to characterize a regular black hole. The holonomy condition has been applied to vari-

ous black holes in 3 dimensional higher spin theories [53, 75, 55, 56] and it has been checked

by comparing bulk and CFT calculations of thermal correlation functions [146, 107, 108], see

[10] for a review and a more extended list of references. Note that there are some puzzles

remaining, for example there are two different proposals for the entropy, namely the ”holo-

morphic” [120] and the ”canonical” [165, 165] one. See [164, 147, 76, 8] for recent work on

the two proposals and their possible relation.

In the Chern-Simons formulation of of higher spin gravity, the WN extension of the

Virasoro symmetry of the boundary theory is obtained via the Drinfeld-Sokolov reduction

by specifying asymptotic boundary fall off conditions for the gauge fields and considering

nontrivial gauge transformations which respect these boundary conditions. If the boundary

conditions are consistent then the boundary charges are integrable, finite and conserved and

generate the (extended) symmetry algebra.

It is a very interesting question whether the higher spin gravity/CFT duality in three
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dimensions can be generalized to non-AdS backgrounds. In [109, 3] a general recipe and

examples including Lobachevsky (R × AdS2), Lifshitz, Schrödinger and warped AdS back-

grounds were given. More recently the same philosophy was applied to flat space holography

in [4, 114].

In the present paper we are interested in a construction and detailed analysis of higher

spin realizations of asymptotically Lifshitz spacetimes. Such spacetimes provide candidates

for a holographic description of field theories with Lifshitz scaling invariance. These theories

exhibit an anisotropic scaling symmetry with respect to space and time ~x → λ~x and t →

λzt, with z 6= 1 and are important in various condensed matter systems (see [137] for

references). In [137] a holographic Lifshitz spacetime solution of a gravity theory coupled to

anti-symmetric tensor fields in four dimension was given. Subsequently Lifshitz space times

have been ground in many (super)gravity theories, see e.g. [90, 23, 91, 116]. In holographic

theories black hole or black brane solutions provide the dual description of field theories

at finite temperature (and chemical potential if the black holes are charged). For Lifshitz

spacetimes the construction of black holes was initiated in [74, 38, 158, 22], but most solutions

in the literature are only known numerically.

In the present paper we focus mainly on the simplest three dimensional higher spin

theory which is based on SL(3,R) × SL(3,R) Chern-Simons theory and corresponds to

gravity coupled to a massless spin three field. For simplicity, most explicit calculations are

performed in this theory, but we shall also comment on generalizations to N > 3 and hs(λ).

The structure of the paper is as follows: In section 4.1 we give a brief review of the

Chern-Simons formulation of higher spin gravity. In section 4.2 we review some salient fea-

tures of field theories which enjoy Lifshitz scaling symmetry, and we discuss the holographic

realization of such theories. We then review how the Lifshitz spacetime can be obtained as a

solution to SL(3,R)× SL(3,R) Chern-Simons theory, and we demonstrate that the algebra

generating Lifshitz isometries can be realized in a higher spin context.

81



In section 4.3 we construct black hole solutions with Lifshitz scaling, focusing on the

simplest case of non-rotating black holes. We discuss the gauge freedom and the holonomy

conditions as well as the thermodynamics. When the holonomy conditions are solved to

express the temperature and chemical potential in terms of the extensive parameters there

are six different branches. Only two of the six have positive temperature and entropy and are

hence physically sensible. We consider two additional conditions on the branches, first the

local thermodynamic stability and second the existence of a radial gauge where the metric

exhibits a regular horizon and find that only one branch satisfies all of these conditions.

In section 4.4 we discuss generalizations of our work including the possibility of con-

structing rotating black hole solutions as well as Lifshitz black holes in hs(λ) higher spin

theory.

We close with a brief discussion of our results in section 4.5. For completeness we sum-

marize our conventions for SL(3,R) and hs(λ) in an appendix.

4.1 Chern-Simons formulation of higher spin gravity

The Chern-Simons formulation of three dimensional (higher spin) gravity is based on two

copies of the Chern-Simons action at level k and −k and gauge group SL(N,R)×SL(N,R).

S = SCS[A]− SCS[Ā] (4.1)

where

SCS[A] =
k

4π

∫
tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (4.2)
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The equations of motion are simply flatness conditions,

F = dA+ A ∧ A = 0, F̄ = dĀ+ Ā ∧ Ā = 0. (4.3)

Ordinary gravity is given by the case N = 2; in the following we will mainly focus on the

case N = 3. This theory was studied in detail in [49] and it was shown that the CS theory

is equivalent to AdS gravity coupled to a massless spin three field. The vielbein and spin

connection take values in the SL(3,R) Lie algebra and are related to the CS gauge fields as

follows:

eµ =
l

2
(Aµ − Āµ), ωµ =

1

2
(Aµ + Āµ). (4.4)

In the following we set the length scale l to one for notational ease. Using the expression of

the vielbein (4.4) in terms of the connection, the metric and spin 3 field can be expressed as

gµν =
1

2
tr(eµeν), φµνρ =

1

6
tr(e(µeνeρ)). (4.5)

The gauge transformations act on the Chern-Simons connections as follows

δA = dΛ + [A,Λ], δĀ = dΛ̄ + [A, Λ̄]. (4.6)

In the construction of asymptotically AdS as well as asymptotically Lifshitz spacetimes, we

employ a special choice of coordinates and choice of gauge. We define a radial coordinate ρ,

where the holographic boundary will be located at ρ→∞. In addition we define a timelike

coordinate t and a space like coordinate x, which can be either compact or non-compact and

hence the boundary has either the topology of R × S1 or R × R. The “radial gauge” that
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we will use is constructed by defining b = exp(ρL0) and setting

Aµ = b−1aµ b+ b−1∂µb, Āµ = b āµb
−1 + b ∂µ(b−1). (4.7)

where aµ = aµ(t, x) and āµ = āµ(t, x) do not depend on ρ.

4.2 Lifshitz spacetimes

Quantum field theories which exhibit a scaling symmetry which is anisotropic with respect

to space and time

t→ λzt, x→ λx (4.1)

appear in many condensed matter systems. The dynamical scaling coefficient z 6= 1 breaks

relativistic symmetry. If one augments the symmetry of the theory to include space and time

translations, then one obtains a theory that is said to possess Lifshitz symemtry. Lifshitz

symmetry can therefore be encoded as a Lie algebra generated by time translations H, spatial

translations P and Lifshitz scalings D satisfying the following structure relations:

[P,H] = 0 [D,H] = zH [D,P ] = P. (4.2)

In two dimensions, conformal symmetry (with z = 1) implies a conserved, traceless and

symmetric stress tensor. For theories with Lifshitz scaling the stress tensor does not have to

be symmetric, since they do not possess boost invariance. The stress-energy complex for field

theories in 1+1 dimensions with Lifshitz scaling exponent z contains the following objects:

the energy density E , the energy flux Ex, the momentum density Px and the stress energy
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tensor Π x
x . These quantities satisfy the following conservation equations (see e.g. [170]):

∂tE + ∂xEx = 0, ∂tPx + ∂xΠ
x
x = 0. (4.3)

In addition, the Lifshitz scaling with exponent z implies a modified tracelessness condition

zE + Π x
x = 0. (4.4)

The Lifshitz symmetries of a (1+1)-dimensional metric can be realized holographically with

the following metric:

ds2 = L2
(
dρ2 − e2zρdt2 + e2ρdx2

)
(4.5)

where the Lifshitz scaling transformation corresponds to a translation ρ → ρ + lnλ. This

metric is not a solution of Einstein gravity with negative cosmological constant; one has to

add matter or higher derivative terms to the action to obtain it as a solution.

One can realize the z = 2 Lifshitz metric in the SL(3,R)×SL(3,R) higher spin theory [3]

by choosing the radial gauge as in (4.7) and by choosing the following connections a = aµ dx
µ

and ā = āµ dx
µ:

a = W2 dt+ L1 dx, ā = W−2 dt+ L−1 dx. (4.6)

It follows from (4.5) that this connection reproduces the Lifshitz metric (4.5) with scaling

exponent z = 2. Lifshitz spacetimes with critical exponents z > 2 can be obtained using

SL(N,R)× SL(N,R) Chern-Simons theory with N > 3.
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4.2.1 Asymptotically Lifshitz connections

Focusing on N = 3 and z = 2, we explore Chern-Simons connections that behave asymp-

totically like Lifshitz. In this section, we use primes to denote derivatives with respect to x

and overdots to denote derivatives with respect to t. With the gauge connections defined in

(4.7), we look for the most general, flat connections with the property that

A− ALif ∼ O(1), as ρ→∞ (4.7)

Ā− ĀLif ∼ O(1), as ρ→∞ (4.8)

where ALif and ĀLif are the Lifshitz connections specified in (4.6). The most general connec-

tions that obey these asymptotics are obtained by adding terms to the Lifshitz connections

a in (4.6) proprotional to W0,W−1,W−2 and L0, L−1 (and similarly for ā). In particular, we

consider the following ansatz:

at = W2 + `t,0L0 + `t,−1L−1 + wt,0W0 + wt,−1W−1 + wt,−2W−2, (4.9)

ax = L1 + `x,0L0 + `x,−1L−1 + wx,0W0 + wx,−1W−1 + wx,−2W−2. (4.10)

Before applying flatness conditions, we allow all coefficients `t,i, `x,i, wt,m, wx,m to be arbitrary

functions of t and x. By suitable gauge transformations, we can set

wx,0 = 0, wx,−1 = 0, `x,0 = 0. (4.11)

Employing the same notation as used in the higher spin black holes, we denote

`x,−1 = −L, wx,−2 =W , (4.12)
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and, after applying the flatness conditions1, we obtain

at = W2 − 2LW0 +
2

3
L′W−1 − 2WL−1 +

(
L2 − 1

6
L′′
)
W−2, (4.13)

ax = L1 − LL−1 +WW−2, (4.14)

where henceforth, an over-dot denotes a t-derivative and a prime denotes an x-derivative.

Flatness also results in the following evolution equations for L and W :

L̇ = 2W ′ (4.15)

Ẇ =
4

3
(L2)′ − 1

6
L′′′. (4.16)

If we follow the same procedure for the barred sector, imposing the condition (4.8), then we

find the following asymptotically Lifshitz connections:

āt = W−2 − 2L̄W0 −
2

3
L̄′W1 + 2W̄L1 +

(
L̄2 − 1

6
L̄′′
)
W2, (4.17)

āx = L−1 − L̄L1 − W̄W2. (4.18)

where again the flatness conditions produce evolution equations for the barred quantities

˙̄L = −2W̄ ′, (4.19)

˙̄W = −4

3
(L̄2)′ +

1

6
L̄′′′, (4.20)

which can be obtained, from (4.15) and (4.16) by replacing L andW by L̄ and−W̄ . The signs

were chosen so that we can now express the quantities appearing in the energy-momentum

1See [125] for discussion of closely related connections and their symmetries.
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complex (4.3) in terms of the parameters appearing in the connection as follows:

E =W + W̄ ,

Px = L − L̄,

Π x
x = −2W − 2W̄ ,

Ex = −
(4

3
L2 − 1

6
∂2
xL
)

+
(4

3
L̄2 − 1

6
∂2
xL̄
)
. (4.21)

It is straightforward to verify that that evolution equations (4.15) and (4.16) imply the

equations for the Lifshitz stress-tensor complex (following the terminology of [170]) with

z = 2, given by (4.3) and (4.4).

4.2.2 Realization of Lifshitz symmetries

We now show that among the gauge transformations that leave the connections (4.13) and

(4.14) form-invariant, there exist those that realize the Lifshitz algebra as a Poisson algebra of

boundary charges. To begin, recall that for each gauge parameter Λ, the standard definition

of the variations of asymptotic symmetry boundary charges in Chern-Simons theory is as

follows [49]:

δQ(Λ) = − k

2π

∫ ∞

−∞
dx tr(ΛδAx). (4.22)

We now show that there exist gauge parameters ΛH ,ΛP ,ΛD that leave the asymptotically

Lifshitz connections form-invariant. Moreover, we show that the variations δQ(ΛH), δQ(ΛP )

and δQ(ΛD) as defined in (4.22) are integrable and yield charges Q(ΛH), Q(ΛP ) and Q(ΛD)

that realize the Lifshitz algebra as a Poisson algebra.

As our first step, we determine the most general gauge parameter that results in a gauge

transformation that leaves the asymptotically Lifshitz connections form-invariant. The radial
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gauge (4.7) is preserved under gauge transformations if and only if the gauge parameter is

of the form

Λ(ρ, t, x) = b−1(ρ)λ(t, x)b(ρ). (4.23)

Given this form, gauge transformations are characterized by the function λ and act on the

connections as follows:

δλaµ = ∂µλ+ [aµ, λ]. (4.24)

Now consider a general gauge parameter λ;

λ =
1∑

i=−1

εiLi +
2∑

m=−2

χmWm, (4.25)

where εi = εi(t, x) and χm = χm(t, x). Gauge transformations are now explicitly given by

δλat = −2δLW0 +
2

3
(δL)′W−1 − 2δWL−1 +

(
2LδL − 1

6
(δL)′′

)
W−2, (4.26)

δλax = −δLL−1 + δWW−2, (4.27)

and enforcing form-invariance of the connections allows one to solve for all parameters εi and
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χi in terms of the two parameters ε = ε1 and χ = χ2.

ε0 = −ε′,

ε−1 = −Lε+
1

2
ε′′ − 2Wχ,

χ1 = −χ′,

χ0 = −2Lχ+
1

2
χ′′,

χ−1 =
2

3
L′χ+

5

3
Lχ′ − 1

6
χ′′′,

χ−2 =Wε+ L2χ− 1

6
L′′χ− 7

12
L′χ′ − 2

3
Lχ′′ + 1

24
χ′′′′.

(4.28)

Form-invariance also gives evolution equations for ε and χ

ε̇ =
8

3
Lχ′ − 1

6
χ′′′, (4.29)

χ̇ = 2ε′, (4.30)

and it constrains the forms of the variations δL and δW

δL = εL′ + 2ε′L+ 2χW ′ + 3χ′W − 1

2
ε′′′, (4.31)

δW =W ′ε+ 3Wε′ +
(4

3
(L2)′ − 1

6
L′′′
)
χ+

(8

3
L2 − 3

4
L′′
)
χ′ − 5

4
L′χ′′ − 5

6
Lχ′′′ + 1

24
χ′′′′′.

(4.32)

Now that we know the precise form of the most general gauge parameters leaving the con-

nections form-invariant, we attempt to identify which of these parameters ΛH ,ΛP and ΛD

lead to charges that satisfy a Lifshitz algebra. To find these parameters, we first notice that

given the Lifshitz metric (4.5), the Lifshitz algebra is geometrically realized by the following
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killing vectors:

ξH = ∂t, (4.33)

ξP = ∂x, (4.34)

ξD = ∂ρ − x∂x − zt∂t. (4.35)

Explicitly, one easily verifies that

[ξP , ξH ] = 0, [ξD, ξH ] = 2ξH , [ξD, ξP ] = ξP . (4.36)

This is precisely the Lifshitz algebra (4.2) with z = 2. These killing vectors generate space-

time diffeomorphisms, and there is a standard realization diffeomorphisms as gauge trans-

formations in Chern-Simons theory via field-dependent gauge parameters [28]

Λ = −ξµAµ. (4.37)

For the asymptotically Lifshitz connections of section 4.2.1, we expect that there exists a

realization of the Lifshitz algebra, but it is not immediately obvious which gauge parameters

one should pick that yield charges satisfying this algebra. However, motivated by the method

of generating diffeomorphisms via gauge transformations, we try the following:

ΛH = −(ξH)µAµ = b−1(−at)b, (4.38)

ΛP = −(ξP )µAµ = b−1(−ax)b, (4.39)

ΛD = −(ξD)µAµ = b−1(−L0 + xax + 2tat)b. (4.40)

These gauge parameters leave the asymptotically Lifshitz connections form-invariant because

one can show that there exists choices of the parameters ε and χ that lead to these gauge pa-
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rameters. To see this explicitly, notice that given ε(t, x) and χ(t, x), if we let λ̂(ε(t, x), χ(t, x))

denote the gauge parameter λ(t, x) of (4.25) obtained after all εi and χm have been substi-

tuted for their expressions in terms of ε and χ in (4.28), then we have

ΛH = b−1λ̂(0,−1)b, (4.41)

ΛP = b−1λ̂(−1, 0)b, (4.42)

ΛD = b−1λ̂(x, 2t)b. (4.43)

We now have candidates for gauge parameters from which to construct charges that satisfy

the Lifshitz algebra. Using the definition (4.22), we find that the expressions for the variations

of the charges corresponding to these gauge parameters are integrable and give

Q(ΛH) =
2k

π

∫ ∞

−∞
dxW , (4.44)

Q(ΛP ) =
2k

π

∫ ∞

−∞
dxL, (4.45)

Q(ΛD) = −2k

π

∫ ∞

−∞
dx(2tW + xL). (4.46)

To determine the Poisson algebra of these charges, we recall that for any two gauge param-

eters Λ and Γ, one has [49, 28]

{Q(Λ), Q(Γ)} = δΛQ(Γ). (4.47)

We assume that the fields L and W vanish sufficiently rapidly as x → ±∞ to ensure that

any boundary terms encountered in computing the gauge-variations of the charges vanish.
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After some tedious but straightforward calculation, we find that

{Q(ΛH), Q(ΛP )} = 0, (4.48)

{Q(ΛD), Q(ΛH)} = 2Q(ΛH), (4.49)

{Q(ΛD), Q(ΛP )} = Q(ΛP ). (4.50)

This is precisely the Lifshitz algebra (4.2). In two dimensions we expect that the Lifshitz

algebra will be extended to an infinite-dimensional algebra, in analogy with the extension

of global conformal symmetry to a Virasoro algebra. A proposal for an infinite-dimensional

extension of the Lifshitz symmetry was made in [68] and can be investigated using the

Chern-Simons formulation.

4.3 Non-rotating Lifshitz black hole

The most general solutions of the Chern-Simons theory have connections A and Ā which are

independent. We relate the barred and unbarred charges by setting

āx = −aTx , āt = aTt , (4.1)

leaving the solutions to be characterized by only by the unbarred connection aµ. Conse-

quently, the expression for the metric (4.5) is diagonal, i.e. the gtx component of the metric

vanishes.

4.3.1 Most general non-rotating black hole solutions

Restricting ourselves to SL(3,R) × SL(3,R) Chern-Simons, we start with a generalization

of the ansatz (4.9), (4.10) in which we allow for source terms as coefficients of the generators

W2 and L1 in the temporal components of the connections. This changes the asymptotics,
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but as we will see presently, this extra freedom will allow us to interpret the resulting

solutions as finite energy excitations above the asymptotic Lifshitz vacuum. We also restrict

our attention to coordinate-independent connection coefficients. Our general ansatz for the

unbarred sector is

at = `t,1L1 + wt,2W2 + `t,0L0 + `t,−1L−1 + wt,1W1 + wt,0W0 + wt,−1W−1 + wt,−2W−2, (4.2)

ax = L1 + `x,0L0 + `x,−1L−1 + wx,0W0 + wx,−1W−1 + wx,−2W−2. (4.3)

Notice that the ansatz (4.9), (4.10) of the last section is a special case of this ansatz obtained

by setting `t,1 = 0 and wt,2 = 1. In order for this ansatz to be a solution of our theory we

need to impose the flatness conditions which constrain the connections;

wt,1 = 0,

`x,0 = 0,

wt,−1 = `t,1wx,−1,

`t,0 = −wt,2wx,−1,

`t,−1 = `t,1`x,−1 − 2wt,2wx,−2,

wt,0 = `t,1wx,0 + 2`x,−1wt,2,

wt,−2 = `2
x,−1wt,2 + `t,1wx,−2 + wx,0wt,2wx,−2 −

1

4
w2,tw

2
x,−1.

(4.4)

These conditions seems to indicate that a flat solution is specified by parameters `t,1, `x,−1

and wt,2, wx,0, wx,−1, wx,−2. However we have not fixed all the gauge freedom, and some of

these parameters are gauge artifacts. In order to see which of these parameters are the

charges and sources of the theory and which of them can be gauged away, it suffices to look

at the only gauge invariant quantities of the theory: the holonomies. A quick inspection of

the holonomies around the thermal and angular cycles shows that the following quantities

94



distinguish different solutions

µ2 = wt,2,

µ1 = `t,1 +
1

3
wx,0wt,2,

L = −`x,−1 +
1

12
w2
x,0,

W = wx,−2 +
1

54

(
18`x,−1wx,0 − w3

x,0

)
.

(4.5)

Under these identifications we will interpret µ1, µ2 and 4L,−4W as sources and their con-

jugate charges. We will expand on this interpretation in section 4.3.3. Finally, to obtain a

generic solution for the barred sector, we take Ā = −AT replacing µi by µ̄i and L, W by

L̄ and W̄ . Limiting out attention to non non-rotating solutions implies setting µ̄i = −µi,

L̄ = L and W̄ .

Note that for a non-vanishing source µ1, the connection (4.2) has a nonzero L1 component

and does not satisfy the criterion for an asymptotically Lifshitz connection (4.7). This

indicates that the source µ1 deforms the Lifshitz vacuum just as in the case of the higher

spin CFTs. We note that it was shown in [?] that in the case of the asymptotically AdS

theory with a deformation by a source still enjoys the full W3 symmetry. It is quite likely

that this is the case for our solution too, but we have not shown it.

4.3.2 Holonomy conditions

In the context of Chern-Simons higher spin theories, black hole solutions need to satisfy

certain holonomy conditions and should have a thermodynamical interpretation [120, 53].

In particular, the requirement of a smooth Euclidean geometry implies that the thermal

holonomy of the Chern-Simons connection is trivial;

P exp

(∮

t

dtAt

)
= 1, (4.6)
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where 1 is the SL(3,R) identity, and the thermal cycle is from t = 0 to t = 2πi. This

condition can be recast in more than one equivalent way. Diagonalizing at, and noting that

at is constant, we find that the condition of a trivial thermal holonomy is equivalent to the

following condition on the eigenvalues λ1, λ2, and λ3 of at;

e2πiλ1 = e2πiλ2 = e2πiλ3 = 1. (4.7)

This means that each eigenvalue of at must be an integer. Since At is an element of sl(3,R),

it must be traceless, and this gives a second requirement on the eigenvalues; they must sum

to zero.

λ1 + λ2 + λ3 = 0. (4.8)

The simplest nontrivial solution is then (λ1, λ2, λ3) = (0, 1,−1). This solution contains the

famous BTZ black hole and its higher spin generalizations studied in [120].

In order to find black hole solutions one demands that the connections (4.2) and (4.3)

obey (4.7) and (4.8). These conditions can be cast in a computationally convenient light.

Employing the Cayley-Hamilton theorem, we note that every 3-by-3 complex matrix X

satisfies its own characteristic polynomial. This means that there exist complex numbers

Θ0,Θ1,Θ2 for which

X3 = Θ0I + Θ1X + Θ2X
2. (4.9)

In particular, this allows one to compute any integer power of X knowing only the coefficients

of the characteristic polynomial, and therefore allows for evaluation of the matrix exponential

of X in terms of these coefficients. In the special case that X is traceless, which is the case

for the argument of the exponential in the thermal holonomy, there are simple expressions
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for the coefficients of the characteristic polynomial, which therefore serve to determine the

thermal holonomy completely;

Θ0 = det(X), Θ1 =
1

2
tr(X2), Θ2 = 0. (4.10)

Applying this to the triviality condition (4.6), we find that the eigenvalues of at are related

to the characteristic polynomial coefficients;

Θ0 = (2πi)3λ1λ2λ3, Θ1 = −2π2(λ2
1 + λ2

2 + λ2
3). (4.11)

In the case of, for example, the BTZ black hole, with (λ1, λ2, λ3) = (0, 1,−1) one obtains

Θ0 = 0, Θ1 = −4π2, Θ2 = 0. (4.12)

In the context of finding a higher spin Lifshitz black hole solutions, we see no compelling

reason to choose the BTZ holonomy conditions over others, but we do so anyway because

they are simple and non-trivial. In principle, however, any conditions on the eigenvalues λj

satisfying (4.7) and (4.8) should give rise to independent solutions. Applying the conditions

(4.12) to our solution, we obtain the following holonomy conditions:

0 = 3Lµ2
1 + 9Wµ1µ2 + 4L2µ2

2 −
3

4
, (4.13)

0 = 108W2µ3
2 + 8L2µ2

(
9µ2

1 − 4Lµ2
2

)
+ 27W

(
µ3

1 + 4Lµ1µ
2
2

)
. (4.14)

These two equations can be used to solve for any two of L,W , µ1, µ2 in terms of the remaining

two. In the next section we shall argue that thermodynamically L and W are charges and

µ1, µ2 are the conjugate potentials.
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4.3.3 Action and entropy

Since the black holes we are studying are gravitational solutions, we need to check that the

Chern-Simons theory provides a correct variational principle. Let I0 denote the euclidean

Chern-Simons action. The on-shell, euclidean action Ios
0 , namely the action in which the

equations of motion have been used, is given by a boundary term

Ios
0 = − k

4π

∫
dφ dt tr(atax) +

k

4π

∫
dφ dt tr(ātāx), (4.15)

and evaluating the action on our non-rotating connections gives [30];

Ios
0 = −4k

(
2Lµ1 + 3Wµ2

)
. (4.16)

However Ios
0 does not obey a thermodynamically sensible variational principle because the

on-shell variation of I0 is

(δI0)os = 8k
(
Lδµ1 +Wδµ2

)
+ δ(4kµ2W). (4.17)

The third term spoils the identification of µ1, µ2 with sources having conjugate charges L

and W . As discussed in [77, 30], in the context of the higher spin black holes, it is possible

to obtain a canonical action I1 that is thermodynamically sensible by adding a boundary

term to I0. When we evaluate I1 on our non-rotating solutions, we obtain

Ios
1 = −8k(µ1L+ 2µ2W), (4.18)

and it has the corresponding on-shell variaton

(δI1)os = 8k(Lδµ1 +Wδµ2). (4.19)
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This relation follows directly from the holonomy conditions (4.13) and (4.14). Taking deriva-

tives of the conditions with respect to the sources, one can show that

∂L
∂µ1

= −6µ1L − 18µ2W
3µ2

1 − 16µ2
2L

,
∂W
∂µ2

= −8L(µ1L − 3µ2W)

3µ2
1 − 16µ2

2L
, (4.20)

∂L
∂µ2

=
16µ2L2 − 9µ1W

3µ2
1 − 16µ2

2L
,

∂W
∂µ1

=
16µ2L2 − 9µ1W

3µ2
1 − 16µ2

2L
. (4.21)

Using these expression one can easily show that that µ1, µ2 are conjugate to L and W

respectively;

∂Ios
1

∂µ1

= 8kL, ∂Ios
1

∂µ2

= 8kW . (4.22)

The following integrability relation follows immediately from the equality of mixed partial

derivatives:

∂W
∂µ1

=
∂L
∂µ2

. (4.23)

The entropy S is naturally a function of the charges L,W . It can can be obtained by

performing a Legendre transform of Ios
1 (µ1, µ2) with respect to the conjugate variables L

and W .

S(L,W) =
∂Ios

1

∂µ1

µ1 +
∂Ios

1

∂µ2

µ2 − Ios
1

= 8k
(
2µ1L+ 3µ2W

)
. (4.24)

Moreover, using the holonomy conditions one can easily verify that the following inverse

thermodynamic relations are:

∂S

∂(8kL)
= µ1,

∂S

∂(8kW)
= µ2. (4.25)
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4.3.4 Temperature and grand potential

Recall that for any thermodynamic system, the grand potential is defined as follows in terms

of the thermal partition function:

Φ = − 1

β
lnZ. (4.26)

Using the saddle point approximation, we identify the on-shell, Euclidean Chern-Simons

action with the log of the partition function, so we obtain

Φ =
1

β
Ios

1 . (4.27)

The thermodynamic potential Φ is associated with the grand canonical ensemble and has as

natural variables the temperature T and the chemical potential α. These can be related to

µ1, µ2 as follows.

In euclidean signature we have chosen the periodicity of the euclidean time circle to be

1. A different euclidean periodicity β is equivalent to keeping the periodicity equal to 1 and

rescaling At by a factor of β. This leads us to re-express the potentials µ1, µ2 in terms of β

(or the temperature T ) and a higher spin potential α.

µ1 = βα =
1

T
α, µ2 = β =

1

T
. (4.28)

This prescription also ensures that after the rescaling, the connections have Lifshitz asymp-

totics.

In thermodynamics it is a well known fact that the grand canonical potential has the
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following differential

dΦ = −SdT −Qdα. (4.29)

It follows that the entropy S and charge Q can be computed as appropriate partial derivatives

of the grand potential;

∂Φ

∂T

∣∣∣∣
α

= −S, ∂Φ

∂α

∣∣∣∣
T

= −Q. (4.30)

For the Lifhsitz black hole, the grand potential Φ is related to the on shell action Ios
1 via

(4.27) which is turn is given by (4.18), giving

Φ = −8k
(
αL+ 2W

)
. (4.31)

Using the holonomy conditions (4.13) and (4.14) to eliminate derivatives with respect to α, T

one can calculate the entropy

S = − ∂Φ

∂T

∣∣∣∣
α

=
1

T
8k
(

2αL+ 3W
)
. (4.32)

Note that the entropy agrees with (4.24). The charge conjugate to the potential α is given

by

Q = − ∂Φ

∂α

∣∣∣∣
T

= −8kL. (4.33)

We can use the thermodynamic relation between grand potential and the internal energy

(which we can identify with the mass of the black hole) to obtain a formula for the energy2

2Notice that it follows from (4.34) that the Gibbs-Duhem relation E = TS + αQ doesn’t hold for our
black hole solution, since it would imply Φ = 0. This is a common feature of black hole thermodynamics
which has been noticed at various points in the literature (see e.g. [?][110]).
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E;

E = Φ + TS + αQ = 8kW . (4.34)

Note that this result agrees with the identification of W with the energy in the holographic

Lifshitz em-complex given in (4.21). We can perform one last consistency check by solving

the holonomy conditions with S and Q as independent variables, it is straightforward to

verify that the First Law of thermodynamics is indeed satisfied;

dE = TdS + αdQ. (4.35)

4.3.5 Branches

After clarifying the thermodynamical interpretation of the parameters in the connection,

we are ready to look for black hole solutions to the holonomy conditions (4.13) and (4.14).

In this section we will express the intensive parameters T and α in terms of the extensive

parameters L and W . Note that due to the nonlinear nature of the holonomy conditions,

there will be multiple branches which can be interpreted as different phases of the theory.

In order to simplify the calculation it proves useful to replaceW by a parameter θ which

is given by

W =

√
16L3

27
sin θ. (4.36)

Using (4.25), we eliminate µ1, µ2 in the first holonomy condition (4.13) in favor of derivatives

of the entropy with respect to L and θ.

64k2L = 9

(
∂S

∂θ

)2

+ 4L2

(
∂S

∂L

)2

. (4.37)

102



-
Π

2
-
Π

4
0
Θ

10

20

30

40

50

Tn=0

L

-
Π

2
-
Π

4
0
Θ

0.2

0.4

0.6

0.8

1.

Sn=0

8 k L

-
Π

2
-
Π

4

Θ

10

20

Α
n=0

L

Figure 4.1: Temperature, entropy and chemical potential of the n = 0 branch

This partial differential equation for S is solved by the following family of solutions parametrized

by a constant C.

S(L, θ) = 8k
√
L cos

(
θ

3
+ C

)
. (4.38)

Inserting this in the second holonomy condition (4.14) gives us a restriction for C given by

sin (3C) = 0, (4.39)

which indicates that C = nπ/3 for n = 0, .., 5. Hence there are six different solutions labelled

by n. All of these solutions can be regarded as thermodynamical branches of a Lifshitz black

hole. The branches n = 1, 2, 3, 4 all show pathologies that make them unphysical. The

n = 1 case has negative temperature for all values of θ,L, while n = 2 has both negative

temperature and entropy. Finally, the n = 3, 4 branches have strictly negative entropy.

Consequently, only the branches with n = 0 and n = 5 seem to be physically sensible.

The entropy and temperature of the first brach (n = 0) read

Sn=0 = 8k
√
L cos

(
θ

3

)
, Tn=0 = − 4L√

3

cos θ

sin θ
3

, αn=0 = −2

√
L
3

cos 2θ
3

cos θ
3

. (4.40)
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Figure 4.2: Temperature, entropy and chemical potential of the n = 5 branch

This implies that for the temperature to be positive, one needs −π/2 < θ < 0, which

imposes the constraint −
√

16L3/27 < W < 0. In this range, the entropy has its minimum

at zero temperature, in accordance with the third law of thermodynamics. Note that under

this constraint, the energy (4.34) is negative, but bounded from below. In section 4.3.8 we

will discuss a simple radial gauge for which this solution looks explicitly like a black hole.

Interestingly, this gauge only exists for this branch and n = 4, which has exactly the same

entropy but with the opposite sign. This does not mean that other branches do not have

black hole gauges, as we have not explored non-radial gauges. For now, the plots of the

temperature and entropy as a function of θ for a fixed value of L, are shown in figure 4.1.

The sixth branch (n = 5) shows the following behavior with respect to L and θ

Sn=5 = 8k
√
L cos

(
θ + 5π

3

)
, Tn=5 =

4L√
3

cos θ

cos 2θ+π
6

, αn=5 = 2

√
L
3

cos 2θ+π
3

cos 2θ+π
6

. (4.41)

This branch has positive values of temperature and entropy for all values of θ ∈ [−π/2, π/2],

as shown in figure 4.2.

4.3.6 Entropy as a function of intensive parameters

Study of the stability and thermodynamical dominance of the different branches requires an

expression for the entropy as a function of intensive parameters. This, in turn, requires us to
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solve the holonomy conditions for L,W in terms of α, T , and then write the entropy using

(4.32) as a function of α and T only. The first holonomy condition (4.13) is linear in W and

can be easily solved;

W = −12α2L+ 12L2 − 3T 2

36α
. (4.42)

Plugging this into the second holonomy condition (4.14), twe obtain the following quartic

equation for L.

256L4 − 576α2L3 + (432α4 − 96T 2L2 + (36α2T 2 − 108α6)L+ 27α4T 2 + 9T 4 = 0. (4.43)

This implies the existence of four branches. Even though the number of branches is different

from the ones found in last section, one can see that appropriately gluing together these

branches, one obtains the solutions we studied in section 4.3.5. For positive temperature,

the only branches with positive entropy can be found in figure 4.3. Note that branch IV has

been plotted for a negative value of α because its entropy is negative otherwise.

One can check that I and II branches map back to the n = 0 branch from the previous

section, while III and IV are related to the n = 5 branch. Figure 4.3b shows the grand

potential (4.31) as a function of the temperature for fixed chemical potential. In the case of

negative α, the only sensible branch is IV, and it dominates the thermodynamics. However,

for a positive value of α, branch I (n = 0) takes over.

We should note that the phase diagrams displayed in section 4.3.5 and 4.3.6 look very

similar to the ones obtained for the asymptotically AdS higher spin black holes discussed

in [53, 75, 55, 56]. This is no surprise since the holonomy equations are identical. The

Lifshitz black hole differs from the AdS higher spin black hole however in the identification of

temperature and chemical potential as well as the charges. Hence the physical interpretation
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while branch IV has α = −3
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of the quantities and physical constraints (such as positive temperature) are different.

It is interesting to study the high temperature limit of these solutions. Branch I cannot

reach high temperatures at fixed α. However, in the high α limit, the temperature can be

arbitrarily high at the point of maximum entropy. This point is defined by a concrete value

of θ, so the high α limit can only be reached by taking L to infinity, as can be seen by looking

at equations (4.40). In that case the temperature grows like L while the entropy grows like
√
L. This implies

Sn=0 ∼
√
T . (4.44)

The same can be checked for branch IV. In the limit of high temperature, one finds that

L =

√
3T

4
+ 33/4

√
T

32
|α|+O(1), (4.45)

S = −31/4sgn(α)√
8

√
T +O(1). (4.46)

Hence for negative α we obtain again

Sn=5 ∼
√
T . (4.47)

This temperature scaling (4.44) and (4.47) is expected for a theory dual to a quantum field

theory with z = 2 anisotropic Lifshitz scaling symmetry in two dimensions [115].

4.3.7 Local stability in the grand canonical ensemble

Local thermodynamical stability is associated with the subadditivity of the entropy, as dis-

cussed in [118, ?] this condition is equivalent to demanding that the Hessian matrices of −S
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and −βΦ are positive definite.

Hmn =
∂2(−S)

∂xm∂xn
, Wmn =

∂2(−βΦ)

∂ym∂yn
(4.48)

Which Matrix one has to consider depends on whether one describes the thermodynamic state

of the system in terms of extensive parameters xi or intensive parameters yi respectively.

In the case of our Lifshitz black hole solution, the extensive parameters can be regarded

as the charges L and W , while the intensive parameters can be regarded as β and βα.

Evaluation of the eigenvalues of the Hessian Hnm for the n = 5 branch shows that this

condition can’t be satisfied for any value of L and W , so the n = 5 branch is locally

unstable. Demanding positive definiteness of the Hessian for the n = 0 branch requires that

θ ∈ (−3 cos−1
(

31/4√
2

)
, 0). This is exactly the regime of θ covered by the curve representing

branch I in figure 4.3.

One can further check that this result is consistent with the description in terms of

potentials. Computation of the eigenvalues of Wnm for the four branches studied in section

4.3.6, indeed shows that branch I is locally stable, while II is not.

4.3.8 Metric and black hole gauge

We now investigate the question whether a gauge exists in which the metric of the Lif-

shitz black hole solutions displays a regular horizon. In fact, we demonstrate that for some

branches one can maintain radial gauge and choose some of the residual gauge such that gtt

contains a double zero and gxx is regular.

We begin again with the ansatz (4.9), (4.10) and the flatness conditions (4.4), where

again the barred sector is determined by the non-rotating condition āx = −aTx and āt = aTt .

We also regard equations (4.5) as a reparametrization of wt,2, lt,1, lx,−1, and wx,−2 as functions

of the charges and potentials L,W , µ1, µ2, and the residual gauge parameter wx,0. Next, we
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solve for the value of wx,0 for which the corresponding metric derived from (4.5) has a double

zero in gtt at some value of ρ = ρh, the location of the corresponding horizon. To do this,

first we note that the metric component gtt can be written as

gtt = −(e2ρp1 − e−2ρp2)2 − (eρp3 − e−ρp4)2 (4.49)

where pi are ρ-independent coefficients given by

p1 = µ2 (4.50)

p3 = µ1 − µ2
wx,0

3
(4.51)

p2 = −
(wx,0

3

)3 µ1

4
+Wµ1 + L2µ2 +

(wx,0
3

)4 µ2

16
+
wx,0

3
2Wµ2 +

1

2
Lwx,0

3

(
2µ1 +

wx,0
3
µ2

)

(4.52)

p4 = Lµ1 −
(wx,0

3

)2 3

4
µ1 +

wx,0
3
Lµ2 +

(wx,0
3

)3 µ2

4
+ 2Wµ2 (4.53)

It is clear that gtt is zero if and only if each term in parentheses on the right hand side

of (4.49) is zero for the same value of ρh which implies that p2/p1 = (p4/p3)2. Using the

expressions above for p1, . . . , p4, this constraint is equivalent to the following cubic equation

for wx,0:

w3
x,0 − 36Lwx,0 − 108W = 0. (4.54)

The three solutions are given by

wx,0 = 4
√

3L cos

(
cos−1(sin θ)

3
+m

2π

3

)
, (4.55)

with m = 0, 1, 2. However the only solution with a positive and real horizon ρh = 4
√
p2/p1 =
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√
p4/p3 is the one with m = 2, which can be simplified to

wx,0 = −4
√

3L sin

(
θ

3

)
. (4.56)

The horizon is then located at

ρh =

√
L
(

2 cos
2θ

3
− 1

)
. (4.57)

It seems that we did not need to impose the holonomy conditions in order to find this black

hole gauge. However, we still need to check that the metric and the spin three field in this

gauge are smooth around the cycle t ∼ t+ 2πi. this implies the following conditions

1 =

√
gtt
−2gρρ

∣∣∣∣
ρh

, 1 =

√
ψxtt
−2ψxρρ

∣∣∣∣
ρh

. (4.58)

Direct substitution of the charges and sources for the six branches found in previous sections

shows that only the n = 0, 4 cases satisfy these identities. This can mean that this gauge

is appropriate for those two solutions, while the other branches require giving up the radial

gauge chosen in equation (4.7). As we have argued in section 4.3.5, the n = 3 branch does

not seem to be physically sensible. For this reason we will focus our attention in branch

n = 0. The values of the spin fields at the horizon in this branch obey the following relations

gtt|ρh = 0, g′tt|ρh = 0, gxx|ρh = 4L, ψxxx|ρh = 2W . (4.59)

So we can recast our expresion for the entropy as

S =
4k

π
A cos

[
1

3
sin−1

(
3

3
2ψ3

A3

)]
(4.60)
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where

A = 2π
√
gxx|ρh , ψ3 = ψxxx|ρh , (4.61)

which is very similar to the entropy formula found for asymptotically AdS higher spin black

holes [?]. It would be interesting to investigate whether the local thermodynamic instability

of the n = 5 branch discussed in section 4.3.7 and the absence of a regular horizon are

related. However, it is an open and interesting question, if for the n = 5 branch there is a

more general radial gauge choice (along the lines of [9]) which has a regular horizon.

4.4 Generalizations

In this section we will present some observations on possible generalizations of our SL(3,R)

results obtained in the previous sections.

4.4.1 Rotating solutions

In the present paper we have limited ourselves to non-rotating solutions, for which the

connections A and Ā are related by equation (4.1). Since the two Chern-Simons connections

A, Ā are independent, it is clear that constructing a solution with angular momentum entails

lifting the condition (4.1). This also means that there will be two holonomy conditions for

the A and the Ā connection. Recall that in the SL(3,R)×SL(3,R) black hole first discussed

in [120] a rotating higher spin black hole is obtained by choosing modular parameter to be

complex τ = Ω + iβ, where Ω is the potential dual to the angular momentum. For the

Lifshitz black holes this cannot work quite the same way and we present some observations

here. Note that in the holographic dictionary or the stress energy complex of a Lifshitz

theory (4.4.1) the angular momentum (i.e. the momentum along the x direction if we take
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x to be compact) is identified with L − L̄, whose conjugate potential is µ1 − µ̄1 and the

energy is identified with W + W̄ , whose conjugate potential is µ2 + µ̄2. Hence it is likely

that a rotating solution can be constructed by choosing a connections with µ1 6= µ̄1 and

keeping the indentification of the temperature β the same as in the non-rotating case. The

expressions for the metric and higher spin fields are much more complicated. This implies

also that the analysis of the black hole gauge done section 4.3.8 becomes more involved, and

we leave these questions for future work. We also note that, to our knowledge, no rotating

Lifshitz black hole solutions have been constructed using the standard supergravity actions.

Hence constructing such solutions in higher spin gravity might be interesting.

4.4.2 Lifshitz vacuum for hs(λ)

In this section we discuss some steps in generalizing the construction of Lifshitz black holes

from SL(3,R) to hs(λ), note that this generalization will also include the case of SL(N,R)

by choosing λ = N , where the infinite-dimensional Lie algebra reduces to SL(N,R). Our

conventions for hs(λ) are summarized in appendix C.2.

A Lifshitz vacuum in the hs(λ) theory can be easily constructed as follows

at =
1√

tr(V s
s−1V

s
−(s−1))

V s
s−1, ax =

1√
tr(V 2

1 V
2
−1)

V 2
1

āt =
1√

tr(V s
s−1V

s
−(s−1))

V s
−(s−1), āx = − 1√

tr(V 2
1 V

2
−1)

V 2
−1. (4.1)

Note that since

[V 2
1 , V

s
s−1]? = 0, [V 2

−1, V
s
−(s−1)]? = 0, (4.2)

this satisfies the flatness condition for a connection in the radial gauge. The gauge connec-

tions Aµ and the metric are obtained from (4.1) by adapting the formulae (4.5) and using
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b = exp(ρV 2
0 ) It follows that the metric is of the form.

ds2 = −e2(s−1)ρdt2 + e2ρdx2 + dρ2. (4.3)

Hence we can realize an asymptotically Lifshitz metric in the hs(λ) theory for any z =

2, 3, 4, · · · , by setting s = z + 1. Note that some higher spin fields will be non-vanishing

for this hs(λ) Lifshitz vacuum. By setting λ = N , the infinite-dimensional hs(λ) gauge

algebra truncates to a finite-dimensional SL(N,R), and the connections give Lifshitz vacua

with z = N − 1, N − 2, · · · , 2. Note that the generators V 2
0 , V

2
1 and V 3

2 form a Lifshitz sub

algebra. The generalization of the evolution equations (4.15) and (4.16) to the case of hs(λ)

is an interesting open problem.

4.4.3 An hs(λ) Lifshitz black hole

Here we limit ourself to the BH for z = 2, which is related to the hs(λ) black hole with

a chemical potential for the spin three charge, which is most extensively studied in the

literature. The connection is given by

ax = V 2
1 + L̃V 2

−1 + W̃V 3
−2 + ŨV 4

−3 + · · · (4.4)

at = µ̃1ax + µ̃2(ax ? ax) |traceless . (4.5)

Here, L̃, W̃ , Ũ , etc are associated with charges of spin 2, 3, 4, · · · . We have tilded all quantities

to distinguish them from the quantities appearing in the higher spin black hole reviewed in

the appendix C.2.

By construction the connection (4.4) satisfied the flatness condition. To define a regular

black hole in a higher spin Chern-Simons theory one has to impose a holonomy condition

on the gauge connection around the euclidean time circle. The holonomy condition which
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we choose is again that the holonomy is equal to the BTZ holonomy for the hs(λ) black

hole defined in appendix C.2. One might object that in the case of the Lifshitz BH this

condition seems less well motivated since there is no analog of a BTZ black hole for an

asymptotically Lifshitz spacetime, however a better way to think about this is that the BTZ

holonomy simply states that the holonomy of the BH is in the center of hs(λ) (see [108] for

a discussion on how the center of hs(λ) is defined).

If we compare the holonomy associated with at defined in (4.4) and the higher spin black

hole holonomy (C.9) one recognizes that they are the same upon the following identifications

µ̃1 = 2πτ, µ̃2 = −2πα. (4.6)

Furthermore the charges can also be identified

L̃ = −2π

k
L, W̃ = − π

2k
W , · · · (4.7)

Since there is a one-to-one map of parameters one might ask how this can be different than

the hs(λ) [145]. The answer lies in the fact that while (this was true for the SL(3,R) case

too) the holonomy conditions have the same functional form, the interpretations of µ̃1 and

µ̃2 are different. The inverse temperature β and the chemical potential α̃ can be related to

µ̃1 and µ̃2 following the the SL(3,R) Lifshitz black hole example

µ̃1 = βα̃, µ̃2 = β. (4.8)

This means that the most natural regime for the Lifshitz black hole , i.e. β̃ finite and α̃ small,

is not the same regime as the one which allows the perturbative solution of the holonomy

conditions first obtained in [145]. Indeed if we take the limit α̃→ 0, this is equivalent for the

higher spin black hole to taking the limit τ → 0 and keeping α finite, i.e. taking an infinite
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temperature limit and finite chemical potential.

4.5 Discussion

In this paper we have discussed the construction of holographic spacetimes dual to field

theory with Lifshitz z = 2 scaling symmetry . In addition we have constructed black hole

solutions in these theories. One interesting feature of these theories is that the connections,

holonomy conditions and thermodynamic relations are all very similar to the higher spin

black holes first constructed in [120]. This can be traced back to the fact that the Lifshitz

black hole connections and the higher spin black hole connections are related by replacing

t, x by z̄, z respectively. Note however that the interpretation of the parameters is quite

different. First, the holographic identification of the stress energy complex of the QFT with

Lifshitz symmetry and the role of the fields L andW are quite different for the Lifshitz theory

compared to the W3 CFT. Second, for the Lifshitz black hole solutions the identification of

the temperature and higher spin chemical potential is in some sense reversed compared to

the higher spin black hole, this leads to a different interpretation of the thermodynamics.

The solution of the holonomy conditions has different branches, which we can interpret as

different thermodynamic phases. We have shown that only one branch (branch I of section

4.3.6) has 1. positive entropy and 2. positive temperature, 3. is locally thermodynamically

stable and 4. enjoys a radial gauge with a regular horizon. All other branches do not satisfy

one or more of these conditions and are therefore physically not satisfying.

We have briefly discussed generalizations of the black hole solutions found in this paper.

It would be interesting to study Lifshitz black hole solutions in hs(λ) further, since there

exists a concrete proposal for a dual CFT and the Lifshitz theories could be interpreted as

deformations of the CFT. Furthermore since it is possible to couple scalar matter consistently

there are independent probes of the geometry of the black hole. To make progress one has to
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solve the holonomy conditions either exactly or maybe less ambitiously determine wether it is

possible to solve the holonomy conditions perturbatively for small α̃ and finite temperature.

We plan to return to these interesting questions in the future.
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Appendix A

Warped AdS Geodesics

A.1 AdS3 in Poincaré fibered coordinates

There are four solution branches for the geodesics in the background (3.5). To obtain these

solutions, one solves equations (3.6) and (3.7) for ψ̇ and φ̇ in terms of x, plugs the result

back into (3.8), and then integrates the resulting equation to obtain

xc,±(λ) =
`cv

4cψcφ ± 2
√
c2
ψ

(
−
(
cv − 4c2

φ

))
cosh

(
2
√
cv(λ−λ0)

`

) , (A.1)

xs,±(λ) =
`cv

4cψcφ ± 2
√
c2
ψ

(
cv − 4c2

φ

)
sinh

(
2
√
cv(λ−λ0)

`

) . (A.2)

We typically refer to the solutions (A.1) as the “cosh-like” branch and to those in (A.2) as

the “sinh-like” branch. The differences between these branches will be clarified in the next

section when we consider global coordinates. Note that in the process of obtaining these four

solutions, one made the assumption that cv−4c2
φ < 0 to get the “cosh-like” branch, while one

assumed that cv−4c2
φ > 0 to obtain the “sinh-like” branch. Each of these solutions for x can

then be combined with the other conservation equations to find the following corresponding
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solutions for φ:

φc,±(λ) = φ̂c,± + 2` coth−1




√
cvcψ coth

(√
cv(λ−λ0)

`

)

2cψcφ ∓
√
c2
ψ

(
−
(
cv − 4c2

φ

))


 , (A.3)

φs,±(λ) = φ̂s,± ∓ 2` coth−1




√
cvcψ

∓2cψcφ tanh
(√

cv(λ−λ0)

`

)
+
√
c2
ψ

(
cv − 4c2

φ

)


 , (A.4)

and the following for ψ:

ψc,±(λ) = ψ̂c,± +
`
√
cv

(
4cφ
√

4c2
φ − cv sinh

(
2
√
cv(λ−λ0)

`

)
+
(
cv − 4c2

φ

)
sinh

(
4
√
cv(λ−λ0)

`

))

2cψ

((
cv − 4c2

φ

)
cosh

(
4
√
cv(λ−λ0)

`

)
+ cv + 4c2

φ

) ,

(A.5)

ψs,±(λ) = ψ̂s,± ±
`
√
cv
(
cv − 4c2

φ

)
cosh

(
2
√
cv(λ−λ0)

`

)

±2cψ
(
cv − 4c2

φ

)
sinh

(
2
√
cv(λ−λ0)

`

)
+ 4cφ

√
c2
ψ

(
cv − 4c2

φ

) . (A.6)

At first glance one might be concerned about the continuity of the “cosh-like” branch solu-

tions because of the presence of the function coth−1. However, we see that the argument of

the coth−1 is of the form α coth(βλ + γ) where α, β, and γ are real, and this ensures that

the overall solution is continuous. Similar remarks hold for the sinh branch.

A.2 AdS3 in global fibered coordinates

The geodesics of (3.29) are obtained by first solving (3.39) to obtain the following four

solution branches:

r±,c(λ) =
cucτ

cv(`/2)2
±
√

(c2
u − cv(`/2)2)(c2

τ + cv(`/2)2)

cv(`/2)2
cosh

( √
cv

(`/2)
(λ− λ0)

)
, (A.7)

r±,s(λ) =
cucτ

cv(`/2)2
∓
√
−(c2

u − cv(`/2)2)(c2
τ + cv(`/2)2)

cv(`/2)2
sinh

( √
cv

(`/2)
(λ− λ0)

)
. (A.8)
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The different branches can be clarified by considering the parametrization of the boundary in

these coordinates found in Appendix A of [15]. The two solutions in the “cosh-like” branch

give geodesics that go from r = +∞ or r = −∞ back to r = +∞ or r = −∞, respectively,

depending on the sign of the solution chosen. The two branches in the “sinh-like” solution

correspond to geodesics that go from r = +∞ to r = −∞ or vice versa. In this paper we

primarily restrict attention to “cosh-like” branch solutions. If we define

fc(λ) = e
√
cv(λ−λ0)
(`/2) hc , hc =

√
(c2
u − cv(`/2)2) (c2

τ + cv(`/2)2) , (A.9)

fs(λ) = e
√
cv(λ−λ0)
(`/2) hs , hs =

√
− (c2

u − cv(`/2)2) (c2
τ + cv(`/2)2) , (A.10)

then the corresponding solutions for τ can be written as

τ±,c(λ) = τ̂±,c − cot−1

(
fc(λ)2 ± 2cτcufc(λ) + (c2

τ − cv(`/2)2) (c2
u − cv(`/2)2)

2
√
cv(`/2) (c2

ucτ − cvcτ (`/2)2 ± cufc(λ))

)
, (A.11)

τ±,s(λ) = τ̂±,s − cot−1

(
fs(λ)2 ∓ 2cτcufs(λ) + (c2

τ − cv(`/2)2) (c2
u − cv(`/2)2)

2
√
cv(`/2) (c2

ucτ − cvcτ (`/2)2 ∓ cufs(λ))

)
. (A.12)

The seeming discontinuity of the function arccot(y) at y = 0 is not important since it can

be glued onto arccot(y) +π there and continue smoothly to negative values of the argument.

This can potentially introduce a shift of π into Lτ , which is important and needs to be

tracked.1 Now if we define

gc,±(λ) = cu cosh

( √
cv

(`/2)
(λ− λ0)

)
± (`/2)

√
cv sinh

( √
cv

(`/2)
(λ− λ0)

)
, (A.13)

gs,±(λ) = (`/2)
√
cv cosh

( √
cv

(`/2)
(λ− λ0)

)
± cu sinh

( √
cv

(`/2)
(λ− λ0)

)
, (A.14)

1An easy way to not have to deal tracking constant shifts like this one is to do the naive calculation first
and obtain a function of the form sin((Lτ + c)/2) in the entanglement entropy answer for the “cosh-like”
branch, with c an overall constant that has not been carefully tracked. Requiring the length to vanish when
Lτ → 0 now fixes c = 0.
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the solutions for u become

u±,c(λ) = û±,c +
1

2
log

((
cu − (`/2)

√
cv
)

(((`/2)2cv + c2
τ ) gc,+(λ)± cτhc)(

(`/2)
√
cv + cu

)
(((`/2)2cv + c2

τ ) gc,−(λ)± cτhc)

)
, (A.15)

u±,s(λ) = û±,s +
1

2
log

((
cu − (`/2)

√
cv
)

(((`/2)2cv + c2
τ ) gs,+(λ)± cτhs)(

(`/2)
√
cv + cu

)
(((`/2)2cv + c2

τ ) gs,−(λ)∓ cτhs)

)
. (A.16)

A.3 Warped AdS3 in global fibered coordinates

To simplify our expressions for geodesics in the background (3.1) with a 6= 1, we define

c1 = −c
2
u − a2c2

u − (`/2)2a2cv
(`/2)4a2

, c2 =
2

(`/2)4
cucτ , c3 =

c2
u − a2c2

τ − (`/2)2a2cv
(`/2)4a2

,

(A.17)

This illuminates the general form of (3.39):

ṙ2 = c1r
2 − c2r − c3 . (A.18)

The general solution with cv > 0 has four branches depending on the sign of the combination

c2
2 +4c1c3. We ignore the case c2

2 +4c1c3 = 0 which yields an exponentially decaying solution.

For c2
2 + 4c1c3 > 0, there are two “cosh-like” branches r±,c and for c2

2 + 4c1c3 < 0, there are

two “sinh-like” branches r±,s:

r±,c(λ) =
c2

2c1

±

√(
c2

2c1

)2

+
c3

c1

cosh
(√

c1(λ− λ0)
)
, (A.19)

r±,s(λ) =
c2

2c1

∓

√
−
(
c2

2c1

)2

− c3

c1

sinh
(√

c1(λ− λ0)
)
. (A.20)

Comparing these solutions to (A.7) and (A.8), we find the same qualitative behavior in r(λ)

for both the warped and non-warped cases. Moreover, setting a = 1 in these warped solutions
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yields precisely (A.7) and (A.8), as one would expect since the form of the r equation is left

unaltered by non-trivial warping. The form of the τ equation is unaltered by warping, so

we expect the corresponding solution to be of the same form. However, notice that the last

term in (3.40) only appears in the case a 6= 1 where there is non-trivial warping, and this

changes the qualitative behavior of the solutions. In particular, manipulating the second

and third terms allows one to write the u equation as

u̇ =
cu

(`/2)2a2
− cu

(`/2)2

r2

r2 + 1
+

cτ
(`/2)2

r

r2 + 1
, (A.21)

from which it becomes clear that integration of the first term with respect to λ leads to a

term in the solution for u that diverges linearly with λ. This is just like the AdS2 ×R case.

A.3.1 cu = 0

A simple limit in which we can compute the length of the geodesic in terms of separations in

τ and u at large r is for cu = 0. In this case, the equations of motion become a-independent

and we are forced onto the “sinh-like” branch. The answer is then just given by the answer

for AdS3 in global fibered coordinates with cu = 0:

Length ∼ log

(√
cos

(
Lτ
2

)
`

ε

)
. (A.22)

It is not a problem that the argument of the log does not begin to vanish in the Lτ =

τ(λ∞)− τ(−λ∞)→ 0 limit, since we are on the “sinh-like” branch and so r(λ∞) 6= r(−λ∞).

Thus, the endpoints remain well-separated in the limit Lτ → 0.
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Appendix B

AdS3 entanglement entropy via

coordinate transformations

For completeness, in this section we show how one can translate from entanglement entropy

answers in Poincaré coordinates to global coordinates, or vice versa, by performing the

appropriate coordinate transformations. The only point one needs to be careful about is the

mapping of the UV cutoff. As an illustrastive example, we will begin with showing how to

get the answer in global coordinates from the answer in the Poincaré patch, within which it

is easiest to compute. We then show how to go from Poincaré fibered coordinates to global

fibered coordinates. Such methods will come in handy when we go from warped AdS3 to the

warped BTZ black hole in Section 3.11.

B.1 Global coordinates from Poincaré patch

Recall that AdS3 can be defined as an embedded submanifold of R2,2 defined by the constraint

X2
0 −X2

1 −X2
2 +X2

3 = 1 (B.1)
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where X0, X1, X2, X3 are the standard coordinates on R2,2. The embedding coordinates for

global AdS3 are

X0 = ` cosh ρ cos tg , X1 = ` sinh ρ sin θg , (B.2)

X2 = ` sinh ρ cos θg , X3 = ` cosh ρ sin tg , (B.3)

while for Poincaré AdS3 they are

X0 =
1

2z
(z2 + `2 + x2 − t2) , X1 =

`x

z
, (B.4)

X2 =
1

2z
(z2 − `2 + x2 − t2) , X3 =

`t

z
. (B.5)

To get from global coordinates to Poincaré coordinates we use the transformations

X2
0 +X2

3

`2
= cosh2 ρ =

1

4`2z2
(z2 + `2 + x2 − t2)2 +

t2

z2
,

X3

X0

= tan tg =
2`t

(z2 + `2 + x2 − t2)
,

X1

X2

= tan θg =
2`x

(z2 − `2 + x2 − t2)
.

The inverse transformations are given by

`2

X0 −X2

= z =
`

cosh ρ cos tg − sinh ρ cos θg
,

`X1

X0 −X2

= x =
` sinh ρ sin θ

cosh ρ cos tg − sinh ρ cos θg
,

`X3

X0 −X2

= t =
` cosh ρ sin tg

cosh ρ cos tg − sinh ρ cos θg
.

Using either set of relationships, we can see that for t = tg = 0 and z = 0, ρ = ∞, we

get x = ` sin θg/(1− cos θg). We want to show that Lx/εP = (x2 − x1)/εP , when written in

terms of Lθ, is Lx/εP ∝ sin(Lθ/2)/εg. Our answer for the length of the curve in Poincaré
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coordinates is

c

6
log

(
Lx
z1

)
+
c

6
log

(
Lx
z2

)
=
c

3
log

(
Lx√
z1z2

)
(B.6)

where we have picked two different endpoints z1 and z2 for the curve. Using z = 2`e−ρ

1−cos θg
as

the asymptotic coordinate transformation between the coordinates gives

Lx√
z1z2

=

(
sin θg,2

1− cos θg,2
− sin θg,1

1− cos θg,1

) √
(1− cos θg,1)(1− cos θg,2)

2e−ρ
(B.7)

=
sin
(
Lθ
2

)

e−ρ
, (B.8)

where we have picked ρ1 = ρ2 = ρ to fix to a constant cutoff surface. We then use e−ρ ∼ a
L
∼ ε

and recover

Sglobal =
c

3
log

sin Lθ
2

ε
=
c

3
log

sin(lπ/L)

ε
(B.9)

upon identifying Lθ = θg,2 − θg,1 = 2πl/L for total circumference L.

B.2 Global fibered from Poincaré fibered

We now map the Poincaré fibered answer onto the global fibered answer. The coordinate

transformations between these two metrics are

φ = ` log

(
eσ cot(τ/2)− 1

eσ cot(τ/2) + 1
eu
)
, ψ =

coshσ sin τ

sinhσ + coshσ cos τ
, x =

1

sinhσ + coshσ cos τ
,

which asymptotically (σ →∞) become

φ = `u , ψ = tan(τ/2) , x =
2e−σ

1 + cos τ
.
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From these relations we see that

Lφ = `Lu , Lψ = tan(τ2/2)− tan(τ1/2) ,

and

1
√
x1x2

=

√
(1 + cos τ1)(1 + cos τ2)

2e−σ
,

since we will be assuming we are at different points x1, x2 at the two ends of the curve in

Poincaré fibered coordinates, whereas for global fibered coordinates we will assume we are

at the same σ coordinate at both endpoints of the curve. Our Poincaré fibered answer was

found to be

S =
c

3
log




√
Lψ` sinh

Lφ
2`

ε


 , (B.10)

where to get here the cutoff relation x ∼ ε2/` was employed. Translating back, we find

ε→
√
ε1ε2 =

√
`
√
x1x2

gives us

S =
c

3
log

√
(tan(τ2/2)− tan(τ1/2))

√
(1 + cos τ1)(1 + cos τ2)

2e−2σ
sinh

Lu
2

=
c

3
log

√
sin(Lτ/2) sinh(Lu/2)

e−2σ
=
c

3
log

(
1

ε

√
sin

(
Lτ
2

)
sinh

(
Lu
2

))

where we have used the relation ε ∼ e−σ for what is now a dimensionless UV cutoff. This is

precisely the answer for global fibered coordinates (3.34).
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Appendix C

Higher-Spin

C.1 Explicit SL(3,R) representation

The SL(2,R) generators of the principal embedding are given by the following matrices

L−1 =




0
√

2 0

0 0
√

2

0 0 0



, L1 =




0 0 0

−
√

2 0 0

0 −
√

2 0



, L0 =




1 0 0

0 0 0

0 0 −1



. (C.1)

and the spin 3 generators, on which we omit the superscript (3) for notational simplicity, are

as follows:

W−2 =




0 0 2

0 0 0

0 0 0



, W−1 =




0 1√
2

0

0 0 − 1√
2

0 0 0



, W0 =




1
3

0 0

0 −2
3

0

0 0 1
3




(C.2)

W1 =




0 0 0

− 1√
2

0 0

0 1√
2

0



, W2 =




0 0 0

0 0 0

2 0 0



. (C.3)
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If we define (T1, T2, . . . , T8) = (L1, L0, L−1,W2, . . .W−2), then traces of all pairs of generators

are given by

tr(TiTj) =




−4 0 · · · 0

2
...

. . .
...

−4 0 · · · 0

0 · · · 0 4

−1

...
. . .

... 2
3

−1

0 · · · 0 4




(C.4)

C.2 hs(λ) conventions and black hole

Here we follow the conventions of [146] and [108]. The main formulas we use are, the lone

star products

V s
m ? V

t
n =

1

2

s+t−|s−t|−1∑

u=1,2,···
gstu (m,n;λ)V s+t−u

m+n . (C.5)

The star product is used to define the commutator between Lie algebra generator and is

denotes by [·, ·]?. For the elements of the Lie-algebra V s
m one has |m| < s (the generators

are zero otherwise). The elements V 2
−1,0,1 form a SL(2,R) sub algebra and V s

m form spin s

representation

[V 2
m, V

t
n ]∗ =

(
m(t− 1)− n

)
V t
m+n. (C.6)
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The algebra has a unit element denoted by X1
0 , the trace is defines by

Tr(X) = X|V 1
0
. (C.7)

A hs(λ) black hole with a chemical potential for the spin 3 charge (this can be generalized

to arbitrary spin s) has the following connections

az = V 2
1 −

2π

k
LV 2
−1 −

π

2k
WV 3

−2 + UV 4
−3 + · · · ,

az̄ = −α
τ̄

(az ? az) |traceless . (C.8)

The holonomy around the time circle is given by H = eω with

ω = 2π
(
τaz + τ̄ az̄

)
. (C.9)

The holonomy condition for the black hole is that the holonomy is the same as the holonomy

of the BTZ black hole

H = HBTZ . (C.10)

where ωBTZ is given by

ωBTZ = 2πτV 2
1 +

π

τ
V 2
−1. (C.11)

This condition is equivalent to the following conditions on the powers of ω (see eq. 2.17 of

[108]).

Tr(ωn) =
1

λ
lim
t→0

(
∂nt

sin πλt

sin πt

)
. (C.12)
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These conditions have been solved perturbatively in the chemical potential α and one gets

the charges L,W ,U , · · · as a power series in α (and depending on τ), such that as α → 0

one gets back the BTZ black hole.
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