- Main
Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44
Published Web Location
https://doi.org/10.1038/ncomms1195Abstract
Recent observations of supernova remnant W44 by the Fermi spacecraft observatory support the idea that the bulk of galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleration. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. Here, we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by exactly one power. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is calculated and successfully fitted to the Fermi Observatory data. The parent proton spectrum is best represented by a classical test particle power law ∝E(-2), steepening to E(-3) at E(br)≈7 GeV due to deteriorated particle confinement.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-