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This thesis is concerned with proving a refined function field analogue of the Coates-

Sinnott conjecture. The theorem we prove identifies precisely the Fitting ideal of a

certain étale cohomology group. The techniques employed are directly inspired by recent

work of Greither and Popescu in equivariant Iwasawa theory, both for number fields and

function fields. They rest on an in-depth study of the Galois module structure of certain

naturally defined 1-motives associated to a function field.
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Chapter 1

Introduction

1.1 Some general notations

κ0 A finite field of characteristic p

κ An algebraic closure of κ0

Z0, Z
′
0 Smooth projective curves over κ0

Z,Z ′ The base changes of Z0 and Z ′0 to curves over κ

v,w Finite places of a global field

κ(v) Residue field associated to a finite place v

K0,K′0,K,K′ Fields of rational functions on the curves Z0, Z
′
0, Z and Z ′

S, S0 Sets of closed points on the curves Z,Z0

OK0,S0 ,OK,S Rings of regular functions on the open curves Z0 \ S0, Z \ S
µ`∞ The group of roots of unity whose orders are a power of `

Q(R) Total ring of fractions of a commutative ring R

G(`) The `-Sylow subgroup of a finite abelian group G

Ĝ(F ) The set of irreducible F -valued characters of the group G

χ,ψ elements of Ĝ(F ), F will be clear from context

R[G] The group ring of G with coefficients in R

Z`,Q` The ring of `-adic integers for `-prime, respectively its field of fractions

Λ The one variable Iwasawa algebra with coefficients in Z`; isomorphic to Z`[[T ]]

div(f) The divisor associated to a rational function f on a curve

1
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1.2 History

This thesis is concerned with proving a refined function field analogue of the

Coates-Sinnott conjecture for number fields. We are heavily influenced by recent results

of Greither and Popescu on this problem in both number fields and function fields, see

[6], [7]. We begin by giving a rough account of the motivation for and formulation of the

problem.

The field of Special Values of L-functions is concerned with making explicit

connections between the algebraic and analytic invariants that one can associate to

global fields. The prototypical example of the kind of relationship that one would like

to establish is given by the classical Stickelberger theorem which we now explain.

Let K/Q be an abelian extension with G = G(K/Q) and let OK be the ring of

integers of K. In addition, let S be a finite set of primes of Q containing all those primes

which ramify in K. To each χ ∈ Ĝ(C), there is an associated S-incomplete L-function

given by the Euler product

LS(s, χ) :
∏
p 6∈S

(1− χ(σp)p
−s)−1

which converges to a holomorphic function for s ∈ C with <e(s) > 1. LS(s, χ) can

be meromorphically continued to all of C and is actually analytic on C \ {1}. Here σp

denotes the Frobenius automorphism corresponding to p in G(K/Q).

These functions can be combined in a simple way to produce an equivariant

L-function

ΘK/Q,S : C→ C[G]

which is analytic on C \ {1}.
Let µK denote the group of roots of unity in K. Observe that µK carries an

action of the group G and so we can consider it as a Z[G]-module. From the classical

evaluation of the L-functions at s = 0, one can prove the following proposition.

Proposition 1.2.1 (Lemma 6.9 in [18]).

AnnZ[G](µK) ·ΘK/Q,S(0) ⊆ Z[G].

This already gives an interesting relationship between the Z[G]-module struc-

ture of µK and the values of the L-functions at s = 0. Stickelberger’s theorem goes much

further.



3

Theorem 1.2.2 (Stickelberger’s Theorem, Theorem 6.10 in [18]). Let Cl(OK) be the

class group of OK . Then

AnnZ[G](µK) ·ΘK/Q,S(0) ⊆ AnnZ[G](Cl(OK)).

We can see that this theorem gives an explicit connection between the value

ΘK/Q,S(0) and the Z[G]-module structure of µK and Cl(OK). Much of the theory of

special values of L-functions is concerned with formulating and proving generalizations

of this theorem.

To generalize, let K/k be an abelian extension of number fields. As above,

let S be a finite set of primes of k containing those primes which ramify in K/k. Let

G = G(K/k) and χ ∈ Ĝ(C). In this context we can still define L-functions by an Euler

product

LS(s, χ) =
∏
p6∈S

(1− χ(σp)Np−s)−1.

Again this product converges to a holomorphic function for <e(s) > 1 but can be con-

tinued to a function which is meromorphic on C and analytic on C \ {1}. As above, σp

denotes the Frobenius automorphism associated to p.

We can still construct an equivariant L-function for K/k. We will denote it by

ΘK/k,S(s) : C→ C[G].

As in the previous case, this function is analytic on C \ {1} and we would like to study

the values of ΘK/k,S(s) at the negative integers. For reasons that will become clear, we

will write these values as ΘK/k,S(1− n) for n ≥ 2. In order to find the proper analogues

of µK and Cl(OK) in this context, we turn to Quillen K-theory.

Quillen K-theory refers to a sequence of functors from the category of commu-

tative rings to the category of abelian groups. These functors, denoted Kn for n ≥ 0,

encode linear algebraic type information about the structure of a ring R. Grothendieck

gave the original defintion of K0(R) as the usual group completion of the abelian semi-

group of isomorphism classes of finitely generated projective R-modules. Bass gave a

definition of K1(R) as the abelianization of the general linear group over R, GL(R).

K1(R) = GL(R)/[GL(R), GL(R)].

In the cases of interest to us, these definitions result in some classical objects of study

in algebraic number theory.
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Example 1.2.3 ([8]). If K is a number field, then we have very concrete interpretations

of both K0(OK) and K1(OK). There is a canonical isomorphism

K0(OK) ' Z⊕ Cl(OK).

Additionally, one can prove that

K1(OK) ' O×K .

With this example in mind we see that Proposition 1.2.1 and Theorem 1.2.2

can be reformulated as statements about the algebraic K-theory of OK .

Theorem 1.2.4. Let K be a finite abelian extension of Q. Then

1. AnnZ[G](K1(OK)tors) ·ΘK/Q,S(0) ⊆ Z[G].

2. AnnZ[G](K1(OK)tors) ·ΘK/Q,S(0) ⊆ AnnZ[G](K0(OK)tors).

Milnor gave a defintion of K2(R), but that is as far as it went for some time.

In 1972, the correct general definition of Kn(R) for all n ≥ 0 was discovered by Quillen.

His definition is topological in nature but is equivalent to the previous definitions in

the cases n = 0, 1, 2. Unfortunately, little about the groups Kn(R) is obvious from first

principles. Of course, as number theorists we are not interested in general commutative

rings. If R = OK is the ring of integers of a number field, then the groups Kn(OK) are

well behaved in the following sense, see the Introduction of [12].

Theorem 1.2.5 (Borel, Quillen). Let K be a number field. The abelian groups Kn(OK)

are all finitely generated. The even K-groups K2n(OK) are all finite. The ranks of the

odd K-groups K2n−1(OK) are given by

rkZ(K2n−1(OK)) =


r1 + r2 − 1 if n = 1,

r1 + r2 if n ≥ 1 and n is odd,

r2 if n ≥ 2 and n is even,

where r1 and r2 are as usual.

It follows from Quillen’s construction that if K/k is a Galois extension with

Galois group G, then each Kn(OK) is a Z[G]-module. Using these K-groups, Coates

and Sinnott proposed the correct analogue of Stickelberger’s theorem in the general

number field context. In order to state it, we will work `-adically for each prime `.
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A deep theorem of Klingen-Siegel shows that ΘK/k,S(1 − n) ∈ Q[G] for all

n ≥ 1, see [14]. This allows us to consider these values as elements of Q`[G] for each

`. As with Stickelberger’s theorem, we must first mention an integrality result on these

special values. This can be proven by combining results of Soulé and Deligne-Ribet

which are mentioned later.

Theorem 1.2.6 (Deligne-Ribet, [5]). Let K/k be an abelian extension of number fields,

let ` be a prime number and let n ≥ 2 be an integer, then

AnnZ`[G](K2n−1(OK)tors ⊗ Z`) ·ΘK/k,S(1− n) ⊆ Z`[G].

With this in hand, we can state the original form of the Coates-Sinnott conjec-

ture.

Conjecture 1.2.7 (K-theoretic Coates-Sinnott, [3]). Let K/k be an abelian extension

of number fields, let ` be a prime number and let n ≥ 2 be an integer, then

AnnZ`[G](K2n−1(OK)tors ⊗ Z`) ·ΘK/k,S(1− n) ⊆ AnnZ`[G](K2n−2(OK)⊗ Z`).

Remark 1.2.8. In fact, the original conjecture was a bit weaker. Coates and Sinnott

were overly cautious and stated their conjecture only under the conditions that K/k was

an extension of totally real fields and that n was even. It turns out that these restrictions

are not necessary. See the reductions which follow Theorem 6.11 in [6].

As alluded to above, the definition of the Quillen K-groups is unwieldy and it

is difficult to attack this problem directly as stated. Fortunately, work of Soulé relates

K-theory to étale cohomology and suggests an alternative approach to this problem. In

[15], Soulé constructs Z`[G]-linear `-adic étale Chern character maps

ch
(`)
n,i : K2n−i(OK)⊗ Z` → H i

ét(OK [1/`],Z`(n))

for all ` > 2 prime, i = 1, 2 and n ∈ Z≥2. Soulé proved that these maps were surjective

and Quillen-Lichtenbaum conjectured that they were in fact isomorphisms. It is known

that this follows from the Bloch-Kato conjecture, see Theorem 2.7 in [8]. The Bloch-Kato

conjecture was recently proven by work of Voevodsky and Rost, see [17].

Theorem 1.2.9 (Quillen-Lichtenbaum conjecture). For all primes ` > 2, i = 1, 2 and

n ∈ Z≥2, the Chern character map ch
(`)
n,i is an isomorphism.
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To formulate the Coates-Sinnott conjecture as a statement about étale coho-

mology groups we first need to state an integrality result relating the Z`[G]-module

structure of these groups to the denominators of the special values ΘK/k,S(1− n).

Theorem 1.2.10 (Deligne-Ribet, [5]). For K/k and S as above, ` prime and n ≥ 1 we

have

AnnZ`[G](H
1
ét(OK,S ,Z`(n))tors) ·ΘK/k,S(1− n) ⊆ Z`[G].

Now the Quillen-Lichtenbaum conjecture allows us to state a form of the Coates-

Sinnott conjecture which is closer in spirit to what we will eventually prove for function

fields.

Conjecture 1.2.11 (Étale Cohomological Coates-Sinnott, [12]). Let K/k be an abelian

extension of number fields with Galois group G, let S be a finite set of primes of k

containing the primes which ramify in K/k, let ` be a prime number and let n ≥ 2 be an

integer, then

AnnZ`[G](H
1
ét(OK [1/`],Z`(n))tors) ·ΘK/k,S(1− n) ⊆ AnnZ`[G](H

2
ét(OK [1/`],Z`(n))).

In fact, a refined version of this theorem has been proven in [6] under an addi-

tional assumption and this version will be stated in the text once we develop a little bit

of commutative algebra.

As mentioned at the beginning of this introduction, we will be primarily con-

cerned in this thesis with function fields over a finite field of characteristic p. The

mathematics that will be developed in the main text is motivated heavily by the theory

laid out above and the well known analogy between number fields and characteristic p

function fields. This analogy will be discussed briefly in the next section.

1.3 The analogy between function fields and number fields

The analogy to which we refer begins with the observation that nearly all of

the objects that we associate to a number field have natural analogues in the theory

of function fields. There is a philosophy in algebraic number theory that if there is

a conjecture that you would like to prove in number fields, then you should be able

to formulate and prove an analogous conjecture in function fields. In many cases the

geometry which is present in the function field context gives one more tools to work with.
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Many of the classical conjectures in algebraic number theory have been formulated and

successfully proven in the function field context.

Here we briefly recall the definition of a function field and give some indication

as to the similarity between the objects on both sides of this analogy. We will also

introduce some basic definions which will be used later in the text. Nothing will be

proven here and a slightly more detailed discussion can be found in [9].

Let κ0 be a finite field of characteristic p. A field K0 containing κ0 is called

a function field over κ0 if K0 is finitely generated and has transcendence degree 1 over

κ0. If t ∈ K0 is transcendental over κ0, then we have that K0/κ0(t) is a finite extension.

Thinking of t now as a variable, we see that the function fields over κ0 are nothing more

than the finite extensions of the rational function field κ0(t), just as number fields are

exactly the finite extensions of Q.

Recall that if K is a number field, then there is a 1-to-1 correspondence between

the equivalence classes of non-archimedean valuations on K and the non-zero prime ideals

of its ring of integers, OK . In the theory of function fields, there is no canonical choice

of a ring of integers. This can be seen already for the field κ0(t). Indeed, each non-zero

prime ideal of the ring κ0[t] gives rise to a valuation of κ0(t) but there is one more! If we

instead look at the ring κ0[1/t] ⊆ κ0(t), then the valuation of κ0(t) which corresponds

to the prime ideal 〈1/t〉 generated by 1/t is not equivalent to any of the previous ones.

It turns out that this accounts for all of the equivalence classes of valuations of κ0(t).

To compensate for the loss of a canonical choice of ring of integers, we are given

a great deal of geometry. For each function field over κ0, there is a unique isomorphism

class of non-singular projective curves defined over κ0 such that the field of rational

functions on any curve in this class is isomorphic to K0. Any of the curves in this class

is called a smooth projective model for K0 over κ0.

We will sometimes need to work in a more classical geometric context. If K
denotes a compositum of K0 with κ, an algebraic closure of κ0, then there is similarly a

unique isomorphism class of non-singular projective curves defined over κ such that if Z

is in this class, then K is isomorphic to the field of rational functions on Z. As above, Z

is called a smooth projective model for K over κ.

Fix one of the models for K0, say Z0. If P is a closed point on Z0 and f ∈ K0,

then we will write ordP (f) for the order of vanishing of f at P . If f is regular at P and v

is the equivalence class of valuations corresponding to P , then we will write either f(P )
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or f(v) for the value of f at P in the corresponding residue field κ(v). Similar notation

will be used for the curve Z.

Instead of prime ideals of a ring, in the function field setting, there is a 1-

to-1 correspondence between closed points on the curve Z0 and equivalance classes of

valuations of K0. In fact for each equivalence class of valuations, there is a closed point

P ∈ Z0 such that

ordP : K0 → Z

represents that class.

Although the analogy is not perfect, we see that there is a strong similarity

between the valuation theory of number fields and function fields. Another important

connection is that in both cases, the residue field associated to a non-archimedean val-

uation is finite. This allows us to define a norm map on the set of valuations of K0

by

N(v) = |κ(v)|.

As in the number field case, this norm map can be used to define a zeta-function and,

in the presence of a Galois group, L-functions. An important difference between the

number field and function field cases is that, in function fields, all of these residue fields

κ(v) have the same characteristic. It is this fact which leads to the rationality of the

zeta-function of a function field as a function of q−s where q = |κ0|.
If S0 is a finite set of closed points of Z0, then let

OK0,S0 = {x ∈ K0 | v(x) > 0 for v 6∈ S0}

be the ring of functions which are regular away from S0. This is just the ring of regular

functions on the open curve Z0 \ S0. Just as in the number field case, one can prove

that OK0,S0 is a Dedekind domain. With any Dedekind domain we are entitled to talk

about the class group, which in this context is called the Picard group Pic(Z0 \ S0). It

is useful to use the more geometric language of divisors and so we will introduce some

terminology.

If X is a potentially infinite set of closed points on the curve Z0, then define

Div(X) to be the free Z-module on the set X, that is

Div(X) =
⊕
P∈X

Z · P.
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Elements of Div(X) are called divisors supported on X. As points on Z0 correspond to

primes of a number field, we see that these divisors are the function field analogue of the

fractional ideals of a number field.

We can define a degree map

deg : Div(X)→ Z

by setting deg(P ) = |κ(v)| where v is the valuation corresponding to P and extending

by Z-linearity. We will denote the kernel of this map by Div0(X).

There is a divisor class map div : K×0 → Div(Z0) given by

div(f) =
∑
P∈Z0

ordP (f) · P

and it is an important fact that for any f ∈ K×0

deg(div(f)) = 0

i.e., div(f) ∈ Div0(Z0) for every f ∈ K×0 .

We now define the Picard group of Z0.

Pic(Z0) =
Div(Z0)

{div(f) | f ∈ K×0 }
.

It turns out that Pic(Z0) is not finite, but it has a natural subgroup which is. We have

observed that div(f) ∈ Div0(Z0) for any f ∈ K×0 and so it makes sense to define

Pic0(Z0) =
Div0(Z0)

{div(f) | f ∈ K×0 }
.

This group Pic0(Z0) is finite and is the correct analogue of the class group of a number

field in the function field setting.

Finally, we can talk about the Picard group of an open curve sitting inside of

Z0. Let S0 be a finite set of points on Z0. Then we can define

Pic(Z0 \ S0) =
Div(Z0 \ S0)

{div(f) | f ∈ K×0 and ordP (f) = 0 for all P ∈ S0}
.

This is a finite abelian group and it is not hard to see that it is isomorphic to Cl(OK0,S0).



Chapter 2

Algebraic Preliminaries

In this chapter we will introduce some of the theory of semi-local Z`-algebras,

and introduce a number of functors on modules over these rings. We then discuss some

of the interplay between these functors and the theory of Fitting ideals. The first Fitting

ideal, from now on just referred to as the Fitting ideal, plays a key role in formulating

refined versions of the classical conjectures on special values of L-functions. As such,

the theory of Fitting ideals has become an indispensible tool in this field. Most of the

material in this chapter can be found in [7].

2.1 Semi-local algebra

Let ` be a prime and let G be a finite abelian group. If F is a field such that

char(F ) - |G| and χ ∈ Ĝ(F ), then we will write eχ = 1
|G|
∑

g∈G χ(g)g−1 ∈ F [G]. Observe

that if R is a ring containing the values of χ, then χ can be extended uniquely to an

R-algebra homomorphism χ : R[G]→ R.

Claim 2.1.1. Suppose that F is an algebraically closed field such that char(F ) - |G|.
Then {eχ | χ ∈ Ĝ(F )} is a complete set of primitive orthogonal idempotents for the ring

F [G].

Proof. The proof is standard. We give it for the convenience of the reader. Let χ, ψ ∈
Ĝ(F ), then

eχeψ =
1

|G|2
∑
g

∑
h

χ(g)ψ(h)(gh)−1 =

∑
g(χψ

−1)(g)

|G|2
∑
h

ψ(h)h−1.

10
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The orthogonality relations for characters of a finite abelian group say that

∑
g∈G

χ(g) =

 |G| if χ is the trivial character

0 if χ is not the trivial character

and so we can complete the calculation above to conclude that

eχeψ =

 eχ if χ = ψ

0 if χ 6= ψ

This shows that the eχ are indeed orthogonal idempotents.

To see that the eχ are primitive, we calculate that

h · eχ =
1

|G|
∑
g

χ(g)hg−1 =
χ(h)

|G|
∑
g

χ(g)g−1 = χ(h) · eχ

for all h ∈ G and therefore x · eχ = χ(x) · eχ for all x ∈ F [G]. This shows that F [G] · eχ
is a 1-dimensional F vector space with basis eχ and therefore the eχ are primitive.

Finally, to see that this set of idempotents is complete, we calculate that∑
χ

eχ =
∑
χ

1

|G|
∑
g

χ(g)g−1 =
1

|G|
∑
g

(
∑
χ

χ(g))g−1.

Again, the orthogonality relations for characters of a finite abelian group tell us that

∑
χ

χ(g) =

 |G| if g is the identity element of G

0 if g is not the identity element of G

Combining this with the above calculation, we get that∑
χ

eχ =
1

|G|
∑
g

(
∑
χ

χ(g))g−1 = 1

and hence {eχ} is a complete set of idempotents.

Let ` be a prime. We will need to understand the structure of group rings

Z`[G]. We will begin by considering groups whose order is co-prime to `.

Proposition 2.1.2. Suppose that G is a finite abelian group with (|G|, `) = 1. For

χ ∈ Ĝ(Q`), let Z`[χ] be the ring obtained by adjoining to Z` all of the values of χ. Then

Z`[G] '
⊕
χ̃

Z`[χ],

where χ̃ runs over the G(Q`/Q`) equivalence classes of Q`-valued characters of G.
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Remark 2.1.3. To clarify the equivalence relation we are imposing: If χ, ψ ∈ Ĝ(Q`),

then χ ∼ ψ if and only if there exists a σ ∈ G(Q`/Q`) such that χ(g) = σ(ψ(g)) for all

g ∈ G.

Proof. Let χ̃ be an equivalence class, with χ ∈ χ̃, and let

Eχ̃ =
∑
ϕ∈χ̃

eϕ.

We claim that Eχ̃ ∈ Z`[G]. First, calculate that

Eχ̃ =
1

|G|
∑
ϕ∈χ̃

∑
g∈G

ϕ(g)g−1 =
1

|G|
∑
g∈G

(
∑
ϕ∈χ̃

ϕ(g))g−1.

Now for each σ ∈ G(Q`/Q`) we have that

σ(
∑
ϕ∈χ̃

ϕ(g)) =
∑
ϕ∈χ̃

ϕσ(g) =
∑
ϕ∈χ̃

ϕ(g).

Therefore
∑

ϕ∈χ̃ ϕ(g) ∈ Z` and since |G| ∈ Z×` this shows that Eχ̃ ∈ Z`[G].

It is easy to see that as χ̃ ranges over these equivalence classes, {Eχ̃} gives a

complete set of orthogonal idempotents for Z`[G]. I claim that the map χ : Z`[G] →
Z`[χ], given by g 7→ χ(g) , factors through Z`[G] · Eχ̃ and that it gives an isomorphism

Z`[G] · Eχ̃
∼−→ Z`[χ].

To see that the map χ factors through Z`[G] · Eχ̃, let ψ ∈ Ĝ(Q`) with ψ 6∈ χ̃.

Then we just have to observe that for each ϕ ∈ ψ̃, ϕ 6= χ and so

χ(eϕ) =
∑
g∈G

ϕχ−1(g) = 0

by the orthogonality relations for characters of a finite abelian group. This shows that

χ(E
ψ̃

) = 0 for ψ̃ 6= χ̃. This implies that

χ(
⊕
ψ̃ 6=χ̃

Z`[G] · E
ψ̃

) = 0

and therefore χ descends to a function on Z`[G] · Eχ̃.

To see that χ is surjective we observe that Z`[χ] is, by definition, generated

over Z` by the values of χ. That is, Z`[χ] is the image of Z`[G] under χ.

For injectivity, suppose that x ∈ Z`[G] and that χ(x · Eχ̃) = 0. Then χ(x) = 0

and certainly σ(χ(x)) = χσ(x) = 0 for all σ ∈ G(Q`/Q`). That is to say that ϕ(x) = 0

for all ϕ ∈ χ̃. Seeing as x · eϕ = ϕ(x) · eϕ for all ϕ ∈ Ĝ(Q`), it follows that x · Eχ̃ = 0
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and hence that χ is injective. We have proven that χ is an isomorphism and therefore

we have

Z`[G] '
⊕
χ̃

Z`[G] · Eχ̃ '
⊕
χ̃

Z`[χ].

Corollary 2.1.4. Let G be a finite abelian group. Write G = G′ × ∆ where G′ is the

`-Sylow subgroup of G and (|∆|, `) = 1. Then we have an isomorphism

Z`[G] '
⊕
χ̃

Z`[χ][G′]

with χ̃ ranging over the G(Q`/Q`)-equivalence classes of Q`-valued characters of ∆. .

Proof. We can write Z`[G] ' Z`[∆][G′] and then the previous proposition gives the

result.

Remark 2.1.5. Let χ ∈ Ĝ(Q`) and define N = |G/ker(χ)|. Then Z`[χ] = Z`[ζN ] where

ζN is any primitive N -th root of unity. Indeed, the image of G under χ is the same

as the image of G/ker(χ) under χ and χ gives an isomorphism of the latter group with

〈ζN 〉 ⊆ Q`
×

.

Proposition 2.1.6. Let G be a finite abelian `-group, let O be the ring of integers of

a finite extension of Q`, and let π ∈ O be a uniformizer (i.e., π generates the maximal

ideal of O). Then O[G] is a local ring with maximal ideal 〈π, IG〉, where IG is the ideal

of O[G] given by IG = 〈g − 1 | g ∈ G〉.

Proof. The Cohen-Seidenberg theorems imply that π is contained in any maximal ideal

of O[G] so it will suffice to show that the ring O[G]/〈π〉 is a local ring. Observe that

O[G]/〈π〉 ' Fq[G] for some q which is a power of `. Write G as a product of cyclic groups,

say G ' C1 × · · · × Cm with |Ci| = `ni . Then we have an isomorphism of Fq-algebras

Fq[G] ' Fq[x1, . . . , xm]/〈x`n11 − 1, . . . , x`
nm

m − 1〉.

In characteristic `, we have that x`
ni

i − 1 = (xi − 1)`
ni and so we can write

Fq[G] ' Fq[x1, . . . , xm]/〈(x1 − 1)`
n1
, . . . , (xm − 1)`

nm 〉.

If x̂i denotes the image of xi in the quotient, then it is clear that the only maximal ideal

of this ring is 〈x̂1 − 1, . . . , x̂m − 1〉 and this shows that O[G] is local with maximal ideal

〈π, x̂1 − 1, . . . , x̂m − 1〉. One sees immediately that this is the ideal 〈π, IG〉.
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Definition 2.1.7. In what follows, a commutative ring R will be called semi-local if there

is an isomorphism R '
∏n
i=1Ri, with Ri local rings. (Note that this is non-standard

terminology. The usual notion being that a commutative ring R is called semi-local if R

has finitely many maximal ideals. )

Corollary 2.1.8. If G is a finite abelian group, then Z`[G] is a semi-local ring.

Proof. Write

Z`[G] '
⊕
χ̃

Z`[χ][G′]

as in Corollary 2.1.4. Since χ ∈ ∆̂ and (|∆|, `) = 1, the extension Q`(χ)/Q` is unramified.

From Remark 2.1.5, we have that Q`(χ) is a cyclotomic extension of Q`, say Q`(ζN ) with

` - N . Then Proposition 16, Chapter IV , §4 of [13] says that Z`[χ] = Z`[ζN ] is the full

ring of integers of Q`(χ). The above proposition now applies to show that each Z`[χ][G′]

is a local ring.

Lemma 2.1.9. Let G be a finite group, let ` be a prime and let x ∈ Z`[G]. Then x is a

zero-divisor if and only if χ(x) = 0 for some χ ∈ Ĝ(Q`).

Proof. If we think of Z`[G] sitting inside its total ring of fractions Q`[G], we just have

to understand the zero-divisors of this larger ring. If we use Proposition 2.1.2 and invert

`, we get that Q`[G] '
⊕

χ̃Q`(χ). Examining the proof of Proposition 2.1.2 shows that

the isomorphism is given by x 7→ (χ(x))χ̃. Finally, it is straightforward to check that in

a product of fields, an element is a zero-divisor if and only if it is zero in at least one

factor.

2.2 Some functors

We remind the reader that a pro-finite group is a projective limit of finite

groups endowed with the usual pro-finite topology. Typical examples of such groups

include Galois groups with the Krull topology. If G is a pro-finite group which is abelian,

then we define the pro-finite group ring associated to G with coefficients in Z` as follows.

Observe that if H and H′ are subgroups of G with H ⊆ H′, then there is a natural

projection map

Z`[G/H]→ Z`[G/H′].
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Using these maps, we define

Z`[[G]] = lim←−Z`[G/H]

where the limit is taken over all open subgroups H ⊆ G. We endow Z`[G/H] with

the `-adic topology and Z`[[G]] is then endowed with the topology induced from the

product topology on the product of the Z`[G/H]. In this way, Z`[[G]] becomes a compact

topological ring. If H is one of these subgroups, then we will write IH for the kernel of

the map

Z`[[G]]→ Z`[G/H].

Example 2.2.1. Let K0/K′0 be a finite Galois extension of characteristic p function fields

with Galois group G. Let κ be an algebraic closure of Fp and let K = K0κ, K′ = K′0κ
be field composita of κ with K0, respectively K′0, inside some algebraic closure of K0.

Let κ0 be the exact field of constants of K′0, i.e. κ0 = K′0 ∩ κ. Then G = G(K/K′0) is

(non-canonically) isomorphic to G(K/K′) × G(K′/K′0) ' G(K0/K0 ∩ K′) × G(K′/K′0).

Of course G(K0/K0 ∩ K′) ⊆ G(K0/K′0) is finite and Γ = G(K′/K′0) ' G(κ/κ0) ' Ẑ. In

this context we always make the canonical choice of topological generator for G(κ/κ0) to

be the q-power Frobenius map γq : x 7→ xq where q = |κ0|. This will be the prototypical

example of such a G.

In what follows, a module over Z`[[G]] will mean a topological Z`[[G]]-module.

Simple examples of such things are Z` and Q`/Z`, each endowed with the trivial G-action.

The topologies here are the `-adic and discrete topologies respectively. The most basic

functors in the study of modules over Z`[[G]] are the invariants and co-invariants functors

associated to different subgroups of G.

Definition 2.2.2. Let M be a finitely generated Z`[[G]]-module and let H ⊆ G be an

open subgroup. Then the H-invariants, MH, and the H-co-invariants, MH, of M are

defined by

MH := {x ∈M | h · x = x for all h ∈ H},

and

MH := M/IH ·M.

We have that MH is the largest submodule of M on which H acts trivially and MH is

the largest quotient of M on which H acts trivially.
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Observe that withH as in the definition, MH andMH both have the structure of

Z`[G/H]-modules. This relies on the fact that G is abelian. Note that ifH is topologically

cyclic with topological generator γH, then there is an exact sequence

0→MH →M
1−γH−−−→M →MH → 0. (2.1)

We record several algebraic lemmas that will be useful in the proof of the refined

Coates-Sinnott conjecture.

Lemma 2.2.3. Suppose that 0→ A→ B → C → 0 is a short exact sequence of finitely

generated Z`[[G]]-modules and let Γ ⊆ G be a subgroup which is topologically cyclic. Then

there is an exact sequence of Z`[[G/Γ]]-modules

0→ AΓ → BΓ → CΓ → AΓ → BΓ → CΓ → 0.

Proof. Let γ be a topological generator of Γ. We simply apply the snake lemma to the

diagram

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

1−γ
y 1−γ

y 1−γ
y

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

Remark 2.2.4. If G/Γ happens to be a finite group, then there is an isomorphism

Z`[[G/Γ]] ' Z`[G/Γ]. This will be the case each time that we apply this Lemma and we

will consider the resulting sequence as a Z`[G/Γ]-module without further comment.

Lemma 2.2.5. Let Γ be as in the previous Lemma. Suppose that M is a Z`[[G]]-module

which is finitely generated over Z`, then MΓ is finite if and only if MΓ is finite.

Proof. Again, let γ be a topological generator for Γ. Consider the tautological exact

sequence (2.1)

0→MΓ →M
1−γ−−→M →MΓ → 0.

Observing that Q` is flat over Z`, we can extend scalars to get

0→MΓ ⊗Z` Q` →M ⊗Z` Q`
1−γ⊗1−−−−→M ⊗Z` Q` →MΓ ⊗Z` Q` → 0. (2.2)

Since M is finitely generated over Z`, MΓ is finite if and only if MΓ⊗Z` Q` = 0

and similarly for MΓ. Since the alternating sum of the Q`-vector space dimensions in
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sequence (2.2) is 0 we necessarily have that dimQ`(MΓ⊗Z` Q`) = dimQ`(M
Γ⊗Z` Q`) and

therefore MΓ ⊗Z` Q` = 0 if and only if MΓ ⊗Z` Q` = 0.

We will need two notions of duality for Z`[[G]]-modules. If M is such a module,

then we set M∗ = HomZ`(M,Z`). If M happens to be finite, then we further define

M∨ = HomZ`(M,Q`/Z`). M∗ and M∨ are given continuous G actions by setting

(g · ϕ)(m) = ϕ(g−1 ·m)

for g ∈ G, ϕ ∈M∗ and ϕ ∈M∨ respectively.

Remark 2.2.6. If G is a finite group and M is a Z`[G]-module, then the same formulas

define two G-actions on M∗ and M∨. We won’t distinguish these constructions with

notation but the group which is acting will always be clear from context. Observe that

this is actually a special case of the previous definition. Every finite group is a pro-finite

group and we’ve already remarked that in this case Z`[G] ' Z`[[G]].

Lemma 2.2.7. Suppose that M is a finitely generated Z`[[G]]-module which is Z`-free

and that MΓ is finite. Then we have an isomorphism

(MΓ)∨ ' (M∗)Γ

Proof. By assumption MΓ is finite and so by Lemma 2.2.5 we have that MΓ is finite.

Since M is Z`-free, we must have that MΓ = 0. Since MΓ = 0, sequence (2.1) reads

0→M
1−γ−−→M →MΓ → 0.

Applying the functor HomZ`(−,Z`) produces the sequence

HomZ`(MΓ,Z`)→ HomZ`(M,Z`)
1−γ−−→ HomZ`(M,Z`)→ Ext1

Z`(MΓ,Z`)→ Ext1
Z`(M,Z`).

Now, since MΓ is finite, we get that HomZ`(MΓ,Z`) = 0. Also, since M is Z`-free, we

get that Ext1
Z`(M,Z`) = 0. The sequence therefore reads

0→ HomZ`(M,Z`)
1−γ−−→ HomZ`(M,Z`)→ Ext1

Z`(MΓ,Z`)→ 0.

This says that Ext1
Z`(MΓ,Z`) ' HomZ`(M,Z`)Γ and so it will suffice to show

that

Ext1(MΓ,Z`) ' HomZ`(MΓ,Q`/Z`).
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For this, we consider the exact sequence

0→ Z` → Q` → Q`/Z` → 0

and apply the functor HomZ`(MΓ,−) to arrive at the sequence

HomZ`(MΓ,Q`)→ HomZ`(MΓ,Q`/Z`)→ Ext1
Q`(MΓ,Z`)→ Ext1

Z`(MΓ,Q`).

Since MΓ is finite we have that HomZ`(MΓ,Q`) = 0 and since Q` is divisible

we have that Ext1
Z`(MΓ,Q`) = 0. This gives the needed isomorphism and this concludes

the proof.

When G is a Galois group, there is often extra structure available. Suppose

that L/F is a Galois extension of fields with G = G(L/F). If we suppose that µ`∞ ⊆ L,

then the `-cyclotomic character, c` : G → Z×` is uniquely defined by g · ζ = ζc`(g) for

all ζ ∈ µ`∞ . In this situation, there is a family of continuous Z`-algebra automorphisms

tn : Z`[[G]]→ Z`[[G]] uniquely characterized by tn(g) = c`(g)ng for g ∈ G. It is simple to

check that (tn)−1 = t−n.

If m is an integer, then we define Z`(m) to be the abelian group Z`, endowed

with a G action via cm` , i.e. for g ∈ G and x ∈ Z`(m), we set g · x = c`(g)mx.

Definition 2.2.8. If M is a Z`[[G]]-module, then the m-th Tate twist of M is defined to

be M(m) = M ⊗Z` Z`(m) with the diagonal G-action. That is, if g ∈ G and x ∈ M(m),

then g ∗ x = c`(g)mg ·m where g ∗ x denotes the action of G on M(m) and g · x denotes

the original action of g on M .

Remark 2.2.9. Observe that M(m) is nothing more than the module obtained by ex-

tending scalars from Z`[[G]] to Z`[[G]] along the automorphism t−m. That is,

M(m) 'M ⊗Z`[[G]] Z`[[G]],

where we the right factor is made into a Z`[[G]]-module via t−m.

It is straightforward to check that M(n)(m) = M(n+m) for all n,m ∈ Z and

this fact will be used without further comment.

Example 2.2.10. Keeping the notation of Example 2.2.1, suppose that ` - char(F ).

Observe that µ`∞ ⊆ κ and so the cyclotomic character is defined on Γ. Since γq is the

q-power Frobenius we have that c`(γq) = q. A simple calculation shows that if V is a Q`

vector space on which γq acts with eigenvalue λ, then γq acts on V (n) with eigenvalue

qnλ.
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Lemma 2.2.11. Let M be a Z`[[G]]-module, let N be either Z` or Q`/Z` with trivial G
action and let n ∈ Z, then

HomZ`(M,N(n)) ' HomZ`(M,N)(n) ' HomZ`(M(−n), N)

as Z`[[G]]-modules.

Proof. The three modules are actually equal as Z`-modules by definition. It is straight-

forward to check that the G actions are the same.

Remark 2.2.12. If we take N to be Z` in the above Lemma, then we deduce the relation

M∗(n) 'M(−n)∗.

Similarly, if N = Q`/Z`, then we get

M∨(n) = M(−n)∨.

2.3 Fitting ideals

Let R be a commutative ring. The R-Fitting ideal is an invariant of a finitely

generated R-module that contains information about the R-module structure but that

is functorial enough to enable the sorts of calculations that we need to make.

Let M be a finintely generated R-module and let K
φ−→ Rn → M → 0 be a

presentation of M . Taking n-th exterior powers, we get a map ∧nK ∧nφ−−→ ∧nRn. Once

we choose a basis for Rn, there is a natural isomorphism det : ∧nRn ' R. We define the

R-Fitting ideal of M to be

FitR(M) = Image(det ◦ ∧nφ) ⊆ R.

In developing the theory of Fitting ideals, one proves that this definition is independent

of the choices made, namely the choice of presentation of M and the choice of basis for

Rn.

Fitting ideals obey the following convenient properties:

Proposition 2.3.1 (Appendix in [10]). Let M,N be finitely generated R-modules, then

1. FitR(M) ⊆ AnnR(M),

2. FitR(R/I) = AnnR(R/I) = I,
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3. FitR(M ⊕N) = FitR(M) · FitR(N).

4. If R
π−→ S is a morphism of rings, then π(FitR(M)) · S = FitS(M ⊗R S).

As an immediate consequence of point 4 in the above Proposition we have the

following formula for the Fitting ideal of a Tate twist.

Corollary 2.3.2. Let M be a Z`[[G]]-module and let m ∈ Z. Then

FitZ`[[G]](M(m)) = t−m(FitZ`[[G]](M)).

Proof. We’ve already observed that M(m) can be viewed as an extension of scalars along

the map t−m and so this follows immediately from point 4 above.

The notion of projective dimension plays an important role in many of our

calculations with Fitting ideals.

Definition 2.3.3. Let R be a commutative ring and let M be an R-module. Then the

projective dimension of M over R, pdR(M), is defined to be the smallest integer n such

that there exists an exact sequence of R-modules

0→ Pn → . . .→ P0 →M → 0

with each Pi projective over R. If no such sequence exists, then we define pdR(M) =∞.

Remark 2.3.4. Observe that pdR(M) ≤ 1 if and only if there exist P0, P1 projective

R-modules and an exact sequence of R-modules

0→ P1 → P0 →M → 0.

Remark 2.3.5. Suppose that R '
∏
iRi is a semi-local ring and that M is an R-module.

Then M decomposes as M '
∏
iMi where each Mi is an Ri-module and we have that

FitR(M) =
∏
i FitRi(Mi). This is a consequence of 3 and 4 in Proposition 2.3.1.

In the next proposition we will need a certain Z`-algebra involution of Z`[G].

Define ι : Z`[G]→ Z`[G] by setting ι(g) = g−1 and extending by Z`-linearity.

Proposition 2.3.6 (Lemma 6 in [1] and Lemma 2.1 in [12]). Let G be a finite abelian

group and suppose that M is a finite Z`[G]-module with pdZ`[G](M) = 1. We have that

FitZ`[G](M
∨) = ι(FitZ`[G](M)).

Furthermore, this ideal is principal, generated by an element which is not a zero-divisor

in Z`[G].
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Proof. Following the remark, we may assume that Z`[G] is a local ring i.e., that G is an

`-group. Since finitely generated projective projective modules over a local ring are free,

M has a presentation of the form

0→ Z`[G]n
ϕ−→ Z`[G]m →M → 0.

As M is Z`[G]-torsion, ϕ becomes an isomorphism upon tensoring with Q`[G].

This shows that m = n and it follows from the definition of the Fitting ideal that

FitZ`[G](M) = 〈det(ϕ)〉. Furthermore, the fact that ϕ becomes an isomorphism when

we extend scalars to Q`[G], implies that det(ϕ) is not a zero-divisor in Z`[G]. This

establishes the second claim.

If we apply the functor HomZ`(−,Z`) to the presentation, we arrive at the short

exact sequence

0→ HomZ`(Z`[G],Z`)n
ϕ∗−→ HomZ`(Z`[G],Z`)n → Ext1

Z`(M,Z`)→ 0. (2.3)

The following sequence of claims will finish the proof.

1. Ext1
Z`(M,Z`) 'M∨.

An analogous claim has been made and proven above in Lemma 2.2.7. The proof

there can be adopted word for word to this situation.

2. HomZ`(Z`[G],Z`) ' Z`[G] as Z`[G]-modules.

Define Ψ : HomZ`(Z`[G],Z`)→ Z` by ϕ 7→
∑

g∈G ϕ(g)g. If we define δg by δg(h) =

0 for h 6= g and δg(g) = 1, then {δg} is a basis of HomZ`(Z`[G],Z`) which maps to

the basis {g} of Z`[G]. This shows that Ψ is an isomorphism of Z`-modules. To

check that the G actions are compatible, we calculate

Ψ(σϕ) =
∑
g∈G

(σϕ)(g)g =
∑
g∈G

ϕ(σ−1g)g

and performing the change of variables g 7→ σg gives us∑
g∈G

ϕ(σ−1g)g =
∑
g∈G

ϕ(g)σg = σΨ(ϕ).

This shows that Ψ is an isomorphism of Z`[G]-modules.

3. If A is the matrix for ϕ with respect to the standard basis of Z`[G]n and B is the

matrix for ϕ∗ with respect to the basis of HomZ`(Z`[G]n,Z`) induced by the above
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isomorphism, then B = ι(AT ). Here AT denotes the transpose of A and ι(AT ) is

the matrix obtained by applying ι to each of the entries of AT .

This will be proven in a lemma following this proposition.

We have already seen that FitZ`[G](M) = 〈Det(A)〉 and combining sequence

(2.3) with point 1 above shows that FitZ`[G](M
∨) = 〈Det(B)〉. Using point 3 we then

have the following sequence of equalities

FitZ`[G](M
∨) = 〈Det(B)〉 = 〈Det(ι(AT ))〉 = 〈ι(Det(A))〉 = ι(FitZ`[G](M)).

In the proof of the above proposition, we needed the following Lemma.

Lemma 2.3.7. With notation as in the above proposition, we have that B = ι(AT ).

Proof. We will identify HomZ`(Z`[G]n,Z`) with HomZ`(Z`[G],Z`)n without further com-

ment. The identification HomZ`(Z`[G],Z`) ' Z`[G] provides us with a Z`[G]-basis of

HomZ`(Z`[G],Z`)n which we will denote by {δ(i)
e }. The function δ

(i)
e is the image of the

standard basis vector ei under the isomorphism. The notation is suggestive and, writing

δ
(i)
g for the function δg defined in the proof of the above proposition but in the i-th

component, our notation is consistent.

Recall that B = [bij ] is the matrix for ϕ∗ with respect to the basis {δ(i)
e } and

A is the matrix for ϕ with respect to the basis {ei}. In order to find bij we need to have

an expression for ϕ∗(δ
(i)
e )(gej) = δ

(i)
e (ϕ(gej)) for each g ∈ G. We calculate that

(δ(i)
e ◦ ϕ)(gej) = δ(i)

e (
∑
k

gajkek) = δe(gaji).

If we write aji =
∑

σ nσσ ∈ Z`[G], then we have

δe(gaji) = δe(
∑
σ

nσgσ) = ng−1

and this shows that

bijδ
(j)
e =

∑
g

ng−1δ(j)
g .

The relation δg = gδe follows from our definition of theG-action on HomZ`(Z`[G],Z`)

and so we finally have that

bijδ
(j)
e =

∑
g

ng−1δ(j)
g = (

∑
g

ng−1g)δ(j)
e = ι(aji)δ

(j)
e .

This shows that bij = ι(aji) and that finishes the proof.
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Remark 2.3.8. In the following Proposition we will have need for a different action

of G on the dual of a finite Z`[G]-module. If M is a finite Z`[G]-module, then define

M∧ = HomZ`(M,Q`/Z`) with G-action defined by g ∗ f(m) = f(g ·m). This is a left G

action because G is an abelian group.

The following property that Fitting ideals enjoy is fundamental to the calcula-

tions that follow.

Proposition 2.3.9 (Lemma 5 in [1]). Suppose that

0→ A→ B → C → D → 0

is a short exact sequence of Z`[G]-modules which are finite and with pdZ`[G](B) ≤ 1 and

pdZ`[G](C) ≤ 1. Then we have that

FitZ`[G](A
∧) · FitZ`[G](C) = FitZ`[G](B) · FitZ`[G](D).

Lemma 2.3.10. Let M be a Z`[G]-module which is cyclic as an abelian group. Then

FitZ`[G](M) = AnnZ`[G](M) = AnnZ`[G](M
∧) = FitZ`[G](M

∧).

Proof. The two outer equalities are contained in Proposition 2.3.1 so it will suffice to

prove that

AnnZ`[G](M) = AnnZ`[G](M
∧).

Due to the obvious Z`[G]-module isomorphism (M∧)∧) 'M it will suffice to prove that

AnnZ`[G](M) ⊆ AnnZ`[G](M
∧). For this, suppose that x ·M = 0 for some x ∈ Z`[G] and

let f ∈ M∧. Then x ∗ f(m) = f(x ·m) = f(0) = 0, for all m ∈ M . This implies the

containment and concludes the proof.

Corollary 2.3.11. Let G be a finite abelian group and let M be a Z`[G]-module. Suppose

that M is finite and cyclic as an abelian group and that pdZ`[G](M) = 1. Then

FitZ`[G](M
∨) = ι(FitZ`[G](M

∧)).

Proof. This is immediate upon combining the results of Proposition 2.3.6 and Lemma

2.3.10.



Chapter 3

Étale Cohomology Groups and

L-functions

In this chapter we introduce the algebraic and analytic objects which appear

in the statement of the refined Coates-Sinnott conjecture. For the algebraic side, we

introduce Jacobians of curves and étale cohomology groups and present the relevant

connections between the two. For the analytic side, the equivariant L-functions, both at

the finite and at the infinite level, are introduced. Again, most of the material in this

chapter can be found in [7].

3.1 Basic setup

From now on, K0/K′0 will be an abelian extension of characteristic p function

fields with Galois group G. We will let κ denote an algebraic closure of Fp and will write

κ0 = K′0 ∩ κ where the intersection is taken inside some algebraic closure of K0. κ0 is

called the field of constants of K′0. We specifically allow for the possibility that the field

of constants of K0 is larger than κ0, i.e. that K0 ∩ κ is strictly larger than κ0.

We will often need to extend the field of constants of K0 and K′0 to κ. We will

write K = K0κ and K′ = K′0κ for the field composita, taken inside an algebraic closure

of K0. By our choice of κ0 we have that K′ is actually isomorphic to the tensor product

K′0 ⊗κ0 κ. If κ0 is not algebraically closed inside K0 though, then K0 ⊗κ0 κ will not be

a field, but rather a direct product of fields, each one isomorphic to K. Galois theory

tells us that K/K′ is an abelian extension of fields whose Galois group is isomorphic to

24
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a subgroup of G(K0/K′0), namely G(K0/K0 ∩ K′).
We will writeG = G(K0/K′0), G = G(K/K′0), Γ = G(K/K0) and Γ′ = G(K′/K′0).

Observe that we have a short exact sequence in the category of groups

0→ Γ→ G → G→ 0.

We will often use this sequence to pass between Z`[[G]]-modules and Z`[G]-modules. In

particular, if M is a Z`[[G]]-module, then MΓ and MΓ are both Z`[G]-modules.

We will denote by Z0 and Z ′0 smooth projective models for K0 and K′0 over κ0.

We recall that this means that Z0, for example, is a smooth projective curve over κ0

whose field of rational functions is isomorphic to K0. Similarly, Z and Z ′ will be smooth

projective models for K and K′ over κ.

The notion of a Frobenius automorphism is ubiquitous in number theory and

this thesis will be no exception. Since we are in characteristic p, there is a distinguished

topological generator for G(κ/κ0). If q = |κ0|, then this is the q-power Frobenius map

γq defined by γq(x) = xq. This can be identified with a topological generator of Γ′.

There is a 1-to-1 correspondence between equivalence classes of rank-1 discrete

valuations of K and closed points on the curve Z. The same statement holds for equiva-

lence classes of rank-1 discrete valuations of K0 and closed points of Z0. Such equivalence

classes of valuations will be referred to as primes. The usual notions of extensions of

primes apply here along with the usual concepts of inertia, ramification and splitting.

If w is a prime of K which is unramified in K/K′0, then there is an associated

Frobenius automorphism in G and since K/K′0 is abelian this Frobenius automorphism

depends only on the restriction of w to K′0. If we denote this restriction by v, then we

will write σ̃v for the Frobenius associated to v in G.
Similarly, if w is a prime of K0 which is unramified in K0/K′0, then there is an

associated Frobenius automorphism in G which depends only on the restriction of w to

K′0. Let v be this restriction. We will write σv for the Frobenius associated to v inside

G.

For concreteness we recall the definition of σv, σ̃v. Let F be either K or K0 and

let w be a prime of F lying above v. Let Fw be the completion of F at the prime w

and let Ow be the valuation ring of Fw. Similarly, let K′0,v,Ov be the completion and

valuation ring for v. If we let κ(w), κ(v) denote the respective residue fields, then the

extension κ(w)/κ(v) is cyclic or pro-cyclic with a distinguished (topological) generator

given by the map x 7→ x|κ(v)|. Since Fw/K′0,v is unramified, this map lifts to a unique



26

element of G(Fw/K′0,v) ⊆ G(F/K′0) and this is the Frobenius automorphism σv or σ̃v

depending on whether F = K or K0. We can see that σ̃v and σv are both characterised

uniquely by the condition

w(σ̃v(x)− xNv) > 0, for all x ∈ Ow

and

w(σv(x)− xNv) > 0, for all x ∈ Ow.

in their respective groups.

The fact that these formally identical properties characterise the Frobenius

automorphism uniquely lets us easily check that

σ̃v|K0 = σv.

We will denote by Gv ' G(Kw/K′0,v), the decomposition group associated to v

in the extension K/K′0. We have that σ̃v is a topological generator for Gv. Similarly,

Gv = G(K0,w/K′0,v) will denote the decomposition group for v in the extension K0/K′0
and σv is a generator of Gv.

Remark 3.1.1. Let w be a prime of K lying over a prime v of K′0. If w corresponds

to the closed point P ∈ Z, then since Z is defined over κ0, we have an action of G on

the closed points of Z. One can prove that Gv is the stabilizer of P under this action.

Similarly, if w is a prime of K0 lying over v and corresponding to P0 ∈ Z0, then Gv is

the stabilizer of P0 under the action of G.

3.2 Jacobians and generalized Jacobians

We keep the notation from the previous section. Let J be the Jacobian of Z.

J is an abelian variety whose group of κ-rational points can be identified with the group

Pic0(Z) :=
Div0(Z)

{div(f) | f ∈ K×}
.

We will always work with the κ-rational points rather than the scheme J and so, to save

notation, the letter J will just mean the group of κ-rational points of J .

If we are given a finite nonempty set of closed points T on Z, then we want to

construct the generalized Jacobian associated to T . To this end, we define the subgroup

of K×

K×T = {f ∈ K× | f(P ) = 1 for all v ∈ T}.
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The generalized Jacobian JT is a semi-abelian variety whose group of κ-rational

points can be identified with the group

Div0(Z \ T )

{div(f) | f ∈ K×T }
.

As above, we will simply write JT for the group of κ-rational points of the scheme JT .

Proposition 3.2.1. Let K(T ) = {f ∈ K | ordP (f) = 0 for all v ∈ T}.

1. There is an isomorphism K×(T )/K
×
T κ
× ∼−→ (

⊕
v∈T

κ(v)×)/κ×, where κ× is embedded

in the sum diagonally.

2. There is a short exact sequence

0→ (
⊕
v∈T

κ(v)×)/κ× → JT → J → 0

Proof. The map JT → J is obtained from the obvious inclusion Div0(Z \ T )→ Div0(Z)

by passing to the quotient. It is surjective by the weak approximation theorem and it is

easy to see that the kernel is isomorphic to K×(T )/K
×
T κ
×. It therefore suffices to prove 1.

There is a map K×(T ) → (
⊕
v∈T

κ(v)×)/κ× given by evaluating f 7→ (f(v))v∈T and

then projecting. This is surjective by the weak approximation theorem and it obviously

factors through K×T κ×. If f is in the kernel, then there is a λ ∈ κ× such that f(v) = λ for

all v ∈ T . Then we have that λ−1f(v) = 1 for all v ∈ T and therefore λ−1f ∈ K×T .

The group (
⊕
v

κ(v)×)/κ× is isomorphic to the group of κ-rational points of a

torus and keeping with our above convention of omitting κ from the notation we will

write τT for this group. In the category of group-schemes, one actually has that JT is

an extension of J by τT .

Corollary 3.2.2. JT is a torsion, divisible group of finite local co-rank (meaning that

for all primes `, there is a λ` ∈ N ∪ {0} such that JT ⊗ Z` ' (Q`/Z`)λ`).

Proof. Each κ(v) is isomorphic to κ itself because κ is algebraically closed. This implies

that
⊕
v∈T

κ(v)× is divisible and hence so is τT , being a quotient of a divisible group.

Any abelian variety over an algebraically closed field is divisible, so J is also a divisible

group. As κ is the algebraic closure of a finite field, τT and J are both clearly torsion.
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The proposition shows that JT is an extension of torsion divisible groups and is therefore

itself torsion and divisible.

For the calculation of the λ`, we observe that τT ⊗ Z` is clearly isomorphic to

(Q`/Z`)(|T |−1). From Remark 3.3 in [7] we can deduce that J ⊗Z` ' (Q`/Z`)2gZ if ` 6= p

and that J ⊗Zp ' (Qp/Zp)αp for a certain αp < gZ . Here gZ denotes the genus of Z. In

all cases, we have that JT ⊗ Z` ' (Q`/Z`)λ` for some finite λ`.

Let A be an abelian group. Let A[m] denote the kernel of the multiplication by

m map A
[m]−−→ A. If ` is prime, then A[`∞] will denote the union of A[`n] for all n ≥ 0.

Observe that A[`∞] ' A ⊗ Z`. We note that if n | m, then [m/n] restricts to a map

[m/n] : A[m]→ A[n].

Definition 3.2.3. Let A be an abelian group and let ` be a prime number. Then the

`-adic realization of A, T`(A), is defined by

T`(A) = lim←−A[`n]

where the transition maps are given by [`] : A[`n]→ A[`n−1].

Corollary 3.2.4. There is a short exact sequence of free Z-modules of finite rank

0→ T`(τT )→ T`(JT )→ T`(J)→ 0.

Proof. As τT is divisible, the sequence from part 1 of Proposition 3.2.1 splits. This

implies that, for each n, we have a short exact sequence

0→ τT [`n]→ JT [`n]→ J [`n]→ 0.

As taking projective limits is an exact functor on the category of finite abelian groups,

we can pass to the limit with respect to the multiplication by ` maps to produce the

desired sequence. It is easy to see that if A is a torsion divisible group of finite local

co-rank, then T`(A) is a free Z`-module of finite rank.

Proposition 3.2.5. Assume that T is G-invariant and suppose that ` 6= p. Then there

are exact sequences in the category of Z`[[G]]-modules

0→ Z` → Div(T )⊗ Z` → Div0(T )⊗ Z` → 0

and

0→ Z`(1)→ Div(T )⊗ Z`(1)→ T`(τT )→ 0.
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Proof. The first exact sequence is clear from the definitions. For the second, if A is a

torsion divisible group, then we clearly have that T`(A) = T`(A[`∞]). We have already

observed that each κ(v)× = κ×. From the definition of τT , we then have a short exact

sequence

0→ κ× → Div(T )⊗ κ× → τT → 0.

We always have that κ×[`∞] = µ`∞ and since ` 6= p, we have that µ`∞ ' (Q`/Z`)(1).

Taking `∞-torsion we then get an exact sequence

0→ (Q`/Z`)(1)→ Div(T )⊗ (Q`/Z`)(1)→ τT [`∞]→ 0.

Observing that T`(Q`/Z`) ' Z` concludes the proof.

3.3 Some étale cohomology groups

Just as the Coates-Sinnott conjecture for number fields can be formulated as

a statement about the Galois module structure of certain étale cohomology groups, we

will arrive at the function field analogue of the classical Coates-Sinnott conjecture by

studying cohomology groups associated to various rings of integers of the field K0. The

machinery that we will use requires that we link these cohomology groups to the Jacobian

of K. For us, the definition of the étale cohomology groups will not be important so we

will be content to present just this link.

Proposition 3.3.1 (Lemma 5.11 and Remark 5.15 in [7]). Let S̃0 be a finite G-invariant

set of primes of K0 and let S be the set primes of K lying over S̃0. There there are

isomorphisms of Z`[G]-modules

1. H2
ét(OK0,S̃0

,Z`(n))
∼−→ (T`(JS)(−n)Γ)∨

2. H1
ét(OK0,S̃0

,Z`(n))
∼−→ (Q`/Z`)(n)Γ ' (Z`(−n)Γ)∨

Proof. The cited references prove everything but the last isomorphism in 2. It is easy

to see that if M is a Z`[[G]]-module, then (MΓ)∨ ' (M∨)Γ. The relation Z∨` ' Q`/Z`
is easily verified and Remark 2.2.12 implies that Z`(−n)∨ ' (Z∨` )(n) Putting all this

together we therefore have Z`[G]-module isomorphisms

(Z`(−n)Γ)∨ ' (Z`(−n)∨)Γ ' (Z∨` (n))Γ ' (Q`/ Z` (n))Γ.
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3.4 The L-functions

Let K0/K′0 be a Galois extension of characteristic p function fields with Galois

group G and let S0, T0 be two finite disjoint non-empty sets of primes of K′0 such that S0

contains all those primes which ramify in K0/K′0. Let q = |κ0|. For each prime v of K′0,

we let dv be the residue degree of v over κ0, given by |κ0(v)| = qdv . To this data we can

associate the (S0, T0) modified equivariant L-function defined by the infinite product

ΘK0/K′0,S0,T0(u) =
∏
v∈T0

(1− σ−1
v · (qu)dv) ·

∏
v 6∈S0

(1− σ−1
v udv)−1. (3.1)

This product converges in Z[G][[u]] to an element of Z[G][u], i.e. it is actually a polyno-

mial in u. See §4.2 of [7] and Proposition 2.15 in Chapter 5 of [16]. To avoid overbur-

dening our notation, we will suppress the extension K0/K′0 and simply write ΘS0,T0 .

The relation between ΘS0,T0(u) and the L-functions attached to characters of

G is given as follows. If χ ∈ Ĝ(C), then the (S0, T0) modified L-function associated to χ

is defined as the convergent Euler product for s ∈ C, <e(s) > 1

LS0,T0(s, χ) =
∏
v∈T0

(1− χ(σv)Nv
1−s) ·

∏
v 6∈S0

(1− χ(σv)Nv
−s)−1.

For each χ ∈ Ĝ(C), this function can be analytically continued to all of C. From the

definitions, one can immediately prove that

ΘS0,T0(q−s) =
∑
χ

LS0,T0(s, χ)eχ−1 . (3.2)

Note that both of these definitions make perfect sense if T0 is empty. In this

case we will suppress T0 from the notation and just write ΘS0(u). We warn the reader

that, unlike ΘS0,T0(q−s) for T0 as above, ΘS0(q−s) may have a pole at s = 1. It is analytic

on C \ {1} though and in particular, it is analytic at all negative integers s = 1 − n. If

we define

δT0(s) =
∏
v∈T0

(1− σ−1
v Nv1−s),

then we have the relation ΘS0,T0(q−s) = δT0(s) · ΘS0(q−s). This factorization will turn

up in later calculations.

Remark 3.4.1. Here we would like to compare the special values of ΘS0,T0 to those which

appear in the statement of the Coates-Sinnott conjecture for number fields. If K/k is an

abelian extension of number fields and S is a finite set of primes of k containing all the
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primes which ramify in K/k, then the S-incomplete equivariant L-function associated to

the data (K/k, S) is defined by ∑
χ

LS(s, χ)eχ−1 .

The special value which appears in the Coates-Sinnott conjecture for number fields is

therefore ∑
χ

LS(1− n, χ)eχ−1 , for n ∈ Z≥2

Using (3.2), we can now see that the approprate special value in the characteristic p

context will be ΘS0(qn−1) ∈ Q`[G], for n ∈ Z≥2.

We fix a prime ` 6= p. For the next step in our development we need to have

an equivariant L-function which lives in Z`[[G]]. Let γq denote the q-power Frobenius,

identified with a topological generator for Γ′ = G(K′/K′0). Since ΘS0,T0 ∈ Z`[G][u],

we can evaluate ΘS0,T0 at γ−1
q to get an element of Z`[G × Γ′] ⊆ Z`[[G × Γ′]]. What

is remarkable is that we actually get an element of Z`[[G]]. What this means is made

precise in the following proposition.

Proposition 3.4.2 ([7]). With notations as above.

1. Z`[[G]] can be identified canonically with a subring of Z`[[G× Γ′]].

2. Under this identification, we have that ΘS0,T0(γ−1
q ) ∈ Z`[[G]].

Proof. 1. Indeed, G can be identified with the subgroup of G × Γ′ consisting of those

(g, σ) such that g and σ agree when restricted to K0 ∩ κ. That is, there is an exact

sequence

0→ G → G× Γ′ → G(K0 ∩ κ/κ0)→ 0

where the first map is given by g 7→ (g|K0 , g|K′) and the second map is given by (g, σ) 7→
g|K0∩κ0 · σ|−1

K0∩κ0 . Consequently we have an injection Z`[[G]] ↪→ Z`[[G× Γ′]].

2. Let κn ⊆ κ be the unique extension of κ0 of degree n inside κ and let Kn = K0κn

be the compositum. We will write Gn = G(Kn/K′0). We will write G(n) for the group

G× (Γ′/Γ′n). Let πn : Z`[[G×Γ′]]→ Z`[G(n)] be the natural projection map. As in part

1, we can identify Gn with a subgroup of G(n). We observe that Z`[[G]] ' lim←−Z`[Gn]

and that this isomorphism is compatible with the inclusions Z`[[G]] ⊆ Z`[[G × Γ′]] and

Z`[Gn] ⊆ Z`[G(n)]. It will therefore suffice to show that πn(ΘS0,T0(γ−1
q )) ∈ Z`[Gn] for all

n.
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This is accomplished by a neat trick. For each n, we define a Z`[Gn]-linear map

ρn : Z`[Gn][u] → Z`[G(n)][u] by u 7→ γ−1
q u, where γq is the image of γq in G(n). We

observe that this map is continuous with respect to the u-adic topologies on both sides

and so it defines a map ρn : Z`[Gn][[u]] → Z`[G(n)][[u]]. Applying ρn to the expression

for ΘS0,T0 as an infinite product, we get

ρn(ΘS0,T0(u)) =
∏
v∈T0

(1− σ−1
v · γ−dvq (qu)dv) ·

∏
v 6∈S0

(1− σ−1
v γ−dvq udv)−1 ∈ Z`[G(n)].

I claim that this is actually ΘKn/K′0,S0,T0 , the equivariant L-function associated to the

data (Kn/K′0, S0, T0). This implies that ρn(ΘS0,T0(u)) ∈ Z`[Gn][u], again see §4.2 of [7]

and Proposition 2.15 in Chapter 5 of [16]. We assume this for the moment and finish

the proof.

Evaluating ρn(ΘS0,T0(u)) at u = 1, we clearly get πn(ΘS0,T0(γ−1
q )) and since

ρn(ΘS0,T0(u)) ∈ Z`[Gn][u] it follows that πn(ΘS0,T0(γ−1
q )) ∈ Z`[Gn].

To see that ρn(ΘS0,T0(u)) is indeed just the equivariant L-function for the ex-

tension Kn/K′0 it suffices to check that for each v 6∈ S0, σvγ
dv
q is in Gn and is in fact the

Frobenius automorphism for v in the extension Kn/K′0.

In the constant field extension κn/κ0, the Frobenius automorphism for v corre-

sponds exactly to the dv-th power of the q-power Frobenius. As the Frobenius automor-

phism is functorial with respect to changing the top field, both σv and γdvq will restrict

to the Frobenius automorhism for v in G(K0 ∩ K′/K′0). This shows that each of these

elements is in Gn. To check that they give the respective Frobenii is straightforward

once we know that they give the Frobenius in both κn/κ0 and K0/K′0.

We finally make the definition

ϑ
(∞)
S0,T0

= ΘS0,T0(γ−1
q ) ∈ Z`[[G]].

The importance of ϑ
(∞)
S0,T0

is given in the following proposition which shows that its twists

know the special values of ΘS0,T0(q−s) at negative integers s = 1− n.

Proposition 3.4.3. If π : Z`[[G]]→ Z`[G] is the reduction map, then

π(t1−n(ϑ
(∞)
S0,T0

)) = ΘS0,T0(qn−1).

Proof. Thinking of G ⊂ G × Γ′ as in the previous proposition, the map G ↪→ G × Γ′ is

given by g 7→ (g|K0 , g|K′). If we define c̃` : G × Γ′ → Z` by c̃`(g, σ) := c`(σ), then c̃`
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extends c` to a group morphism defined on G × Γ′ which is trivial on G. This affords

us with a corresponding extension of t1−n to a continuous Z`-algebra automorphism

t̃1−n of Z`[[G× Γ′]] which is trivial on G. Also observe that the obvious reduction map

π̃ : Z`[[G× Γ′]]→ Z`[G] is an extension of π.

Now we calculate that

π(t1−n(ϑ
(∞)
S0,T0

)) = π̃(t̃1−n(ΘS0,T0(γ−1
q ))) = π̃(ΘS0,T0(qn−1 · γ−1

q )) = ΘS0,T0(qn−1).



Chapter 4

Picard 1-Motives and the Proof of

the Main Theorem

4.1 1-Motives

The concept of a 1-motive, introduced by Deligne in [4], has provided the foun-

dation for recent success in proving classical conjectures on special values of L-functions.

1-motives were used by Deligne and Tate to prove the Brumer-Stark conjecture in func-

tion fields, see [16]. The notion of a 1-motive has been generalized by Greither-Popescu

through the introduction of their abstract 1-motives, see [6]. With this machinery they

have successfully proven the Brumer-Stark conjecture for number fields under certain

hypotheses as well as many other conjectures on special values of L-functions. Here we

introduce the basic language of Deligne’s (geometric) 1-motives before going over the

construction that will be of use to us. This material can be found in [7] or [16].

Definition 4.1.1. Let κ be an algebraically closed field. A 1-motive over κ consists of

the following set of data

1. a free Z-module of finite rank L,

2. an abelian variety A and a torus τ , both defined over κ,

3. an extension of A by τ over κ, denoted Aτ ,

4. a group homomorphism d : L→ Aτ (κ).

34
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To keep notation simple, we will just write Aτ , A, τ for the respective κ-valued points.

Obviously, all of the information going into a 1-motive is contained in the diagram

[L
d−→ Aτ ] and so we will just write M = [L

d−→ Aτ ] for a 1-motive

Remark 4.1.2. It is straightforward to see that Aτ is a divisible abelian group. Indeed,

there is a short exact sequence

0→ τ → Aτ → A→ 0.

The group of κ-rational points of any abelian variety is divisible so both τ and A are.

The divisibility of Aτ follows because extensions of divisible groups are divisible.

The usefulness of a 1-motive comes via it’s `-adic realizations for each prime `.

Let M = [L
d−→ Aτ ] be a 1-motive. If n ∈ N, then we would like to define the n-torsion

points of M for all n. To do this, observe that we have the multiplication-by-n map

Aτ
[n]−→ Aτ , surjective because Aτ is a divisible group. If we let X = Aτ ×Aτ L denote

the pullback of L and Aτ with respect to δ and [n], then we have the following diagram

0 −−−−→ Aτ [n] −−−−→ X −−−−→ L −−−−→ 0∥∥∥ y yδ
0 −−−−→ Aτ [n] −−−−→ Aτ

[n]−−−−→ Aτ −−−−→ 0

Proposition 4.1.3 (See comments following Definition 2.5 in [7]). If we define M[n] =

X ⊗ Z/nZ, then we have a short exact sequence

0→ Aτ [n]→M[n]→ L⊗ Z/nZ→ 0. (4.1)

Proof. L is a free Z-module so the top sequence in the above diagram splits.

If n | m are positive integers, then we can construct natural multiplication by

m/n maps [m/n] : M[m] → M[n] as follows. An element of M[m] consists of a pair

(P, λ) with P ∈ Aτ ⊗ Z/mZ, λ ∈ L⊗ Z/mZ and [m](P ) = d(λ). We define

[m/n](P, λ) = ([m/n](P ), λ).

Now fix a prime number `. We define the `-adic realization of M by

T`(M) = lim←−M[`n]

where the transition maps are given by [`] :MS,T [`n]→MS,T [`n−1].
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The last thing that we will need to note about general 1-motives is that taking

projective limits in (4.1) produces the short exact sequence of free Z-modules of finite

rank

0→ T`(Aτ )→ T`(M)→ L⊗ Z` → 0. (4.2)

Remark 4.1.4. We observe that these constructions are all functorial. In the next

section, once we’ve introduced the 1-motives we will be working with, this will lead to

natural Z`[[G]]-module structures on all of these `-adic realizations.

4.2 Construction of the relevant Picard 1-motive

We keep the setup and notation from the last chapter. Suppose that we are

given two finite G-invariant sets of primes of K, say S and T , such that S ∩ T = ∅.
We assume that T 6= ∅ and that S contains all the primes which are ramified in K/K′.
Recalling that JT is an extension of the abelian variety J by the torus τT , the machinery

from the last section associates to the data (K, S, T ) the so-called Picard 1-motive

MS,T = [Div0(S)
δ−→ JT ]

where δ is the map which sends a divisor to its class in JT . Note that this makes sense

because of the assumption that S ∩ T = ∅.
In this context, the sequence (4.2) takes the form

0→ T`(JT )→ T`(MS,T )→ Div0(S)⊗ Z` → 0. (4.3)

Certain subgroups of K× play an important role in the study of T`(MS,T ).

Recall that we have defined

K×T = {f ∈ K× | f(w) = 1 for all w ∈ T}.

We also define

K(n)
S,T = {f ∈ K×T | ordP (f) is divisible by n, for all P 6∈ S}.

Observe that K×nT ⊆ K(n)
S,T .

Using these two groups, we can provide the following concrete description of

MS,T .
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Proposition 4.2.1 (Proposition 2.9 in [7]). For each n, there is an isomorphism

MS,T [n]
∼−→ K(n)

S,T /K
×n
T .

Consequently, for each `, we have an isomorphism

T`(MS,T )
∼−→ lim←−K

(`n)
S,T /K

×`n
T .

Remark 4.2.2. We have already described the transition maps between the groups on

the 1-motive side. The transition maps

K(`n+1)
S,T /K×`n+1

T → K(`n)
S,T /K

×`n
T

are just induced by the natural inclusion K(`n+1)
S,T ↪→ K(`n)

S,T .

Remark 4.2.3. If S and T are G-invariant, then T`(MS,T ), then these construction

endow T`(MS,T ) with a natural Z`[[G]]-module structure and the above exact sequences

all exist in the category of Z`[[G]]-modules.

Greither-Popescu have recently proven a number of remarkable theorems on

the Z`[[G]]-module structure of T`(MS,T ).

Theorem 4.2.4 (Corollary 4.13 in [7]). Let S, T be as above and assume further that S

and T are both G-invariant. Let S0, T0 be the sets of primes of K′0 which lie below the

primes in S, T . In addition, let H = G(K/K′). Then,

1. T`(MS,T ) is Z`[H]-projective.

2. FitZ`[[G]](T`(MS,T )) = 〈ϑ(∞)
S0,T0
〉.

We will need a certain G equivariant duality pairing relating MS,T to MT,S

Proposition 4.2.5 (Theorem 5.20 in [7]). For each n ∈ Z, there is an isomorphism of

Z`[[G]]-modules

T`(MS,T )(n− 1) ' T`(MT,S)(−n)∗

Proof. There exists a Z`[[G]]-equivariant perfect pairing

T`(MS,T )× T`(MT,S)→ Z`(1),

see the proof of Theorem 5.20 in [7]. This implies that

T`(MS,T ) ' HomZ`(T`(MT,S),Z`(1)) = T`(MT,S)∗(1).
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Tensoring with Z`(n− 1), then gives an isomorphism

T`(MS,T )(n− 1) ' T`(MT,S)∗(n)

and applying Lemma 2.2.11 finishes the proof.

4.3 Statement of the refined Coates-Sinnott conjecture

First, we recall the statement of the classical Coates-Sinnott conjecture for

number fields as given in the Introduction.

Conjecture 4.3.1 (Coates-Sinnott). Let K/k be an abelian extension of number fields

with Galois group G, let S be a finite set of primes of k containing the primes which

ramify in K/k, let ` be a prime number and let n ≥ 2 be an integer, then

AnnZ`[G](H
1
ét(OK [1/`],Z`(n))tors) ·ΘK/k,S(1− n) ⊆ AnnZ`[G](H

2
ét(OK [1/`],Z`(n))).

Using the theory of Fitting ideals we can formulate a stronger refined version

of this conjecture.

Conjecture 4.3.2 (Refined Coates-Sinnott). Keep the same hypotheses as above and

let S̃ be the set of primes of K lying over the primes in S. Then,

AnnZ`[G](H
1
ét(OK [1/`],Z`(n))tors) ·ΘK/k,S(1− n) ⊆ FitZ`[G](H

2
ét(OK,S̃ [1/`],Z`(n))).

Let us see that this is a stronger conjecture. Indeed, Proposition 2.3.1 tells us

that

FitZ`[G](H
2
ét(OK,S̃ [1/`],Z`(n))) ⊆ AnnZ`[G](H

2
ét(OK,S̃ [1/`],Z`(n))).

From Remark 3.4 in [12], we have

AnnZ`[G](H
2
ét(OK,S̃ [1/`],Z`(n))) ⊆ AnnZ`[G](H

2
ét(OK [1/`],Z`(n)))

and so we see that this conjecture implies the previous one. In fact, for ` > 2, an

especially strong form of this conjecture has been proven by Greither-Popescu under one

additional hypothesis.

Theorem 4.3.3 (Greither-Popescu, Theorem 6.11 in [6]). Under the above hypotheses,

let ` > 2 and further suppose that the Iwasawa µ-invariant for the Z`-cyclotomic ex-

tension of K is zero (see chapter 13 of [18] for the definition). Then there exists an

idempotent ε ∈ Z`[G], such that
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1. ε ·ΘK/k,S(1− n) = ΘK/k,S(1− n) ∈ Q`[G].

2. AnnZ`[G](H
1
ét(OK [1/`],Z`(n))tors)·ΘK/k,S(1−n) = ε·FitZ`[G](H

2
ét(OK,S [1/`],Z`(n))).

Let S∞(k) be the set of archimedean primes of the field k. The idempotent ε

is defined by

ε =


∏
v∈S∞(k)

1
2(1 + (−1)nσv) if k is totally real,

0 otherwise.

In addition to their work in number fields, Greither and Popescu have proven

an analogue of Conjecture 4.3.2 in the function field case. In fact, the use of Picard 1-

motives in the function field case directly inspired the definition of the abstract 1-motives

that were introduced in [6] and which played a key role in their work in number fields.

Theorem 4.3.4 (Greither-Popescu, Theorem 5.20 in [7]). Let K0/K′0 be an abelian

extension of characteristic p function fields, let S0 be a finite set of primes of K′0 which

contains all the primes which ramify in K0/K′0, let ` be a prime different from p and let

n ≥ 2 be an integer. Let S̃0 be the primes of K0 lying over those in S0. Then

AnnZ`[G](H
1
ét(OK0,S̃0

,Z`(n))) ·ΘS0(qn−1) ⊆ FitZ`[G](H
2
ét(OK0,S̃0

,Z`(n))).

Examining theorems 4.3.3 and 4.3.4, it is natural to expect that we could prove

a theorem which precisely calculates the Fitting ideal of H2
ét(OK0,S̃0

,Z`(n)). The main

result of this thesis is the following theorem which does exactly this and whose proof

will occupy the next section.

Theorem 4.3.5. Under the hypothese of the previous theorem, we have

AnnZ`[G](H
1
ét(OK0,S̃0

,Z`(n))) ·ΘS0(qn−1) = FitZ`[G](H
2
ét(OK0,S̃0

,Z`(n))).

Remark 4.3.6. There are deep reasons why one would not expect the idempotent ε to

play a role in the function field setting. In addition, the analogue of the µ-invariant

in function fields would measure the presence of p-torsion in the `-adic Tate module of

the Jacobian. Since `-adic Tate modules of Jacobians are free, (indeed, the `-adic Tate

module of any abelian variety is free) the µ-invariant vanishes automatically in function

fields.
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Remark 4.3.7. The reason that ` = p is excluded from consideration here is that the

groups H i
ét(OK0,S̃0

,Zp(n)) for i = 1, 2 are trivial in characteristic p. There is an appro-

priate replacement for p-adic étale cohomology in characteristic p in the form of crys-

talline cohomology. The formulation and proof of a refined Coates-Sinnott conjecture at

p will be forthcoming.

4.4 Proof of the refined Coates-Sinnott conjecture

In this section, we give a proof of Theorem 4.3.5. We will keep the notation

from the previous sections, but we will recall some of it here for the convenience of the

reader. Let ` be a prime different from p and let n ≥ 2. Let S0, T0 be two finite sets

of primes of K′0 such that S0 contains the primes which ramify in K0/K′0, S ∩ T = ∅
and S, T 6= ∅. Let S, T denote the primes of K lying over the primes in S0, T0. Further,

denote by S̃0, the primes of K0 lying over those in S0.

We begin by recalling exact sequence (4.3) from section 4.2, where we have

switched the roles of S and T .

0→ T`(JS)→ T`(MT,S)→ Div0(T )⊗ Z` → 0

Tensoring this with Z`(−n) and using the first sequence in Proposition 3.2.5 to

extend the sequence by a term leads to the four term exact sequence

0→ T`(JS)(−n)→ T`(MT,S)(−n)
ϕ−→ Div(T )⊗ Z`(−n)→ Z`(−n)→ 0 (4.4)

Proposition 4.4.1. After taking Γ co-invariants, sequence (4.4) induces a four term

exact sequence of Z`[G]-modules

0→ T`(JS)(−n)Γ → T`(MT,S)(−n)Γ → (Div(T )⊗ Z`(−n))Γ → Z`(−n)Γ → 0. (4.5)

Furthermore, all of these modules are finite.

Proof. We can split (4.4) into the two short exact sequences

0→ T`(JS)(−n)→ T`(MT,S)(−n)→ kerϕ→ 0

and

0→ kerϕ→ Div(T )⊗ Z`(−n)→ Z`(−n)→ 0.
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To check the exactness claimed in the proposition, it will suffice to check that

each of these sequences stays exact when we take co-invariants. Applying Lemma 2.2.3

we, produce the sequences

(kerϕ)Γ → T`(JS)(−n)Γ → T`(MT,S)(−n)Γ → (kerϕ)Γ → 0

and

Z`(−n)Γ → (kerϕ)Γ → (Div(T )⊗ Z`(−n))Γ → Z`(−n)Γ → 0.

We need to show that (kerϕ)Γ = 0 and that (Z`(−n))Γ = 0. As a free Z`-module

has no non-zero finite submodules, it will suffice to show that (kerϕ)Γ and (Z`(−n))Γ

are both finite. Finally, using Lemma 2.2.5 we see that this is equivalent to showing that

(kerϕ)Γ and Z`(−n)Γ are both finite.

Let α ∈ N, γ ∈ Γ be defined so that γ = γαq is a topological generator for Γ.

There is an obvious isomorphism of Z`[[G]]-modules Z`(−n) ' Z`[[Γ]]/〈1 − c`(γ)nγ〉. If

we pass to the quotient by taking Γ co-invariants we get

Z`(−n)Γ ' Z`[[Γ]]/〈1− c`(γ)nγ, 1− γ〉 ' Z`/〈1− c`(γ)n〉.

Since c`(γ)−n 6= 1 for any n ≥ 1, this is a quotient of two free Z`-modules of rank 1 and

therefore it is finite.

As (kerϕ)Γ ⊆ (Div(T ) ⊗ Z`(−n))Γ, we can just show that the latter group is

finite. Breaking up the summands in Div(T )⊗ Z`(−n) by looking at all those primes w

of K which lie over a given prime v of K′0, we can write

Div(T )⊗ Z`(−n) =
⊕
v∈T0

⊕
w|v

Z`(−n) · w.

Fix a prime v ∈ T0. We know that G acts transitively on the primes lying above v and

if w0 is a choice of a single such prime, then Remark 3.1.1 tells us that the stabilizer of

w0 in G is Gv . This lets us easily show that there is an isomorphism⊕
w|v

Z`(−n) · w ' Z`[[G]]⊗Z`[[Gv ]] Z`(−n) · w0

given by ∑
σ∈G/Gv

aσ · σ(w0) 7→ (
∑

aσσ)⊗ w0.

We noted while defining σ̃v that it is a topological generator for Gv and this easily implies

that we have an isomorphism of Z`[[G]]-modules

Z`[[G]]⊗Z`[[Gv ]] Z`(−n) · w0 ' Z`[[G]]/〈1− c`(σ̃v)nσ̃v〉.
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The coinvariants are then given by

(
⊕
w|v

Z`(−n) · w)Γ ' Z`[[G]]/〈1− c`(σ̃v)nσ̃v, 1− γ〉 ' Z`[G]/〈1− c`(σ̃v)nσv〉.

To prove that this is finite it suffices to show that 1− c`(σ̃v)nσv is not a zero-divisor in

Z`[G] for all n ≥ 2. By Lemma 2.1.9, this is equivalent to showing that 1−c`(σ̃v)nχ(σv) 6=
0 for any χ ∈ Ĝ(Q`). This is clear though because χ(σv) is a root of unity but c`(σ̃v) =

Nv ∈ Z×` has infinite order.

This proves exactness and along the way we’ve managed to prove that two of

the four modules appearing in this sequence are finite. If we show that either one of the

two remaining modules is finite, then the finiteness of the other will follow. Let’s work

with T`(JS)(−n)Γ.

From Corollary 3.2.4, we have a short exact sequence

0→ T`(τS)→ T`(JS)→ T`(J)→ 0.

Twisting and taking Γ co-invariants we have the sequence

T`(τS)(−n)Γ → T`(JS)(−n)Γ → T`(J)(−n)Γ → 0.

We will show that T`(JS)(−n)Γ is finite by showing that T`(τS)(−n)Γ and T`(J)(−n)Γ

are both finite.

For T`(τS)(−n), Proposition 3.2.5 leads to a short exact sequence

0→ Z`(1− n)→ Div(S)⊗ Z`(1− n)→ T`(τS)(−n)→ 0

and it was proven above that the first two modules have finite co-invariants; it follows

that the third must have finite co-invariants as well.

For T`(J)(−n) recall that the Riemann hypothesis for Z (a theorem due to

Weil) says that the action of γ ∈ Γ on T`(J)⊗Z` Q` has eigenvalues which are algebraic

integers of absolute value (qα)1/2 which are independent of `. Using this, Example 2.2.10

tells us that the eigenvalues for the action of γ on T`(J)(−n) ⊗Z` Q` all have absolute

value (qα)1/2−n. Since n is an integer, 1 is not an eigenvalue of this action and so

(T`(J)(−n)⊗Z`Q`)
Γ = 0. Clearly T`(J)(−n) injects into T`(J)(−n)⊗Z`Q` and therefore

we have that T`(J)(−n)Γ = 0. By Lemma 2.2.5 it follows that T`(J)(−n)Γ is finite.

We intend to apply Proposition 2.3.9 to the sequence obtained by dualizing

sequence (4.5). We will check that all of the hypotheses are satisfied before dualizing.
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The only hypotheses that have not already been verified are that the two modules in the

middle of the sequence have projective dimension at most 1.

Proposition 4.4.2. Both of (Div(T ) ⊗ Z`(−n))Γ and T`(MT,S)(−n)Γ have projective

dimension equal to 1 over Z`[G].

Proof. Theorem 4.2.4 implies that T`(MS,T ) is Z`[H]-projective for H = G(K/K′).
Propositon 1 of §3, Chapter 9 in [13] implies then that T`(MS,T )(n − 1)∗ is Z`[H]-

projective too. Proposition 4.2.5 now implies that T`(MT,S)(−n) is also Z`[H] projective.

Let K∞,K′∞, denote the Z`-extension of K0 contained in K/K0, resepectively

Z`-extension of K′0 contained in K′/K′0. We will write Γ′` = G(K′∞/K′0). Now, we can

write Γ ' Ẑ '
∏
r Zr, where r runs over the prime numbers. As T`(MT,S) is a free Z`-

module, say of rank m, the action of Γ on T`(MT,S) factors through a map to GLm(Z`).

It is easy to see that the prime-to-` part of GLm(Z`) is finite and this implies that the

image of
∏
r 6=` Zr ⊆ Ẑ in GLm(Z`) is finite.

This shows that the action of Γ actually factors through a subextension of K/K′0
which is finite over K∞ i.e., T`(MT,S) is a module over Z`[[G(K∞(µN )/K′0)]] for some N

with ` - |G(K∞(µN )/K∞)|. If we assume that ` | N , as we now do, then we even have

that µ`∞ ⊆ K∞(µN ) and therefore that T`(MT,S)(−n) is a Z`[[G(K∞(µN )/K′0)]]-module.

If we write Γ`,N = G(K∞(µN )/K0), then we have

T`(MT,S)(−n)Γ = T`(MT,S)(−n)Γ`,N .

Recall that we have defined H = G(K/K′). Let us write H ′ = G(K∞(µN )/K′∞).

It is easy to see that H is isomorphic to a subgroup of H ′ and that the quotient H ′/H

has order co-prime to `. There is an exact sequence

0→ H ′ → G(K∞(µN )/K′0)→ Γ′` → 0

and the fact that Γ′` is topologically cyclic implies that this sequence is split. We can

therefore write

Z`[[G(K∞(µN )/K′0)]] ' Z`[[Γ′`]][H ′].

We intend to apply Proposition A.2.3 from the appendix and so we observe, in the

notation of that section, that Z`[[Γ′`]] ' Λ and we can consider T`(MT,S)(−n) as a

module over Λ[H ′]. As T`(MT,S)(−n) is H-c.t., the fact that ` - |H ′/H| implies that it

is H ′-c.t. as well. It is clear that T`(MT,S)(−n) has no finite Λ submodules and so we
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conclude that there is a short exact sequence

0→ P1 → P0 → T`(MT,S)(−n)→ 0

where P1, P0 are projective over Λ[H ′].

The isomorphism G(K∞(µN )/K′0)/Γ`,N ' G is clear and so Lemma 2.2.3 im-

plies that there is an exact sequence of Z`[G]-modules

T`(MT,S)(−n)Γ`,N → (P1)Γ`,N → (P0)Γ`,N → T`(MT,S)(−n)Γ`,N → 0.

Lemma 2.2.5 now implies that T`(MT,S)(−n)Γ`,N = T`(MT,S)(−n)Γ = 0 because we

have already shown that T`(MT,S)(−n)Γ is finite and T`(MT,S)(−n) clearly has no finite

Z`-submodules.

Since the modules (Pi)Γ`,N are clearly projective over Z`[G], this implies that

pdZ`[G](T`(MT,S)(−n)Γ) = 1.

Now we deal with (Div(T )⊗Z`(−n))Γ. In the previous proposition, we showed

that (Div(T )⊗Z`(−n))Γ is isomorphic as a Z`[G]-module to a direct sum of modules of

the form Z`[G]/〈1 − c`(σ̃v)nσv〉. It was furthermore shown that 1 − c`(σ̃v)nσv is not a

zero–divisor in Z`[G]. This implies that we have an exact sequence of Z`[G]-modules

0→ Z`[G]
1−c`(σ̃v)nσv−−−−−−−−→ Z`[G]→ Z`[G]/〈1− c`(σ̃v)nσv〉 → 0.

This shows that Z`[G]/〈1−c`(σ̃v)nσv〉 has projective dimension 1 over Z`[G] and therefore

the same is true of Div(T )⊗ Z`(−n)Γ. This concludes the proof.

Applying HomZ`(−,Q`/Z`) to (4.5) we arrive at the sequence

0→ (Z`(−n)Γ)∨ → ((Div(T )⊗Z`(−n))Γ)∨ → (T`(MT,S)(−n)Γ)∨ → (T`(JS)(−n)Γ)∨ → 0.

(4.6)

Observe that this sequence still satisfies the hypotheses of Proposition 2.3.9. The finite-

ness of the modules is clear and in the proof of Proposition 2.3.6 we proved that if

pdZ`[G](M) = 1, then pdZ`[G](M
∨) = 1 also.

We will adopt the convention in the remainder of this section that all Fitting

ideals are taken over Z`[G]. We now apply Proposition 2.3.9 to sequence (4.6) to conclude

an equality which is of fundamental importance for our proof

Fit(((Z`(−n)Γ)∨)∧) · Fit((T`(MT,S)(−n)Γ)∨)

= Fit(((Div(T )⊗ Z`(−n))Γ)∨) · Fit((T`(JS)(−n)Γ)∨) (4.7)
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All that remains is to calculate each of these Fitting ideals in turn and then to

put the pieces together.

Having already shown that

Div(T )⊗ Z`(−n) '
⊕
v∈T0

Z`[[G]]/〈1− c`(σ̃v)nσv〉,

it follows directly from Proposition 2.3.1 that

Fit(Div(T )⊗ Z`(−n))Γ) =
∏
v∈T0

(1− σvNvn).

If we now apply Proposition 2.3.6 we see that

Fit(((Div(T )⊗ Z`(−n))Γ)∨) = ι(
∏
v∈T0

(1− σvNvn)) =
∏
v∈T0

(1− σ−1
v Nvn) = δT0(1− n).

Applying Lemma 2.2.7, and Proposition 4.2.5 we get that

(T`(MT,S)(−n)Γ)∨ ' (T`(MT,S)(−n)∗)Γ ' T`(MS,T )(n− 1)Γ.

Combining Theorem 4.2.4 with Lemma 2.2.11 we have that

FitZ`[[G]](T`(MS,T )(n− 1)) = 〈t1−n(ϑ
(∞)
S0,T0

)〉.

Applying Proposition 3.4.3, we then have that

FitZ`[[G]](T`(MS,T )(n− 1)Γ) = 〈π(t1−n(ϑ
(∞)
S0,T0

))〉 = 〈δT0(1− n) ·ΘS0(qn−1)〉.

The étale cohomology groups enter the picture when we apply Proposition 3.3.1.

This says that

(Z`(−n)Γ)∨ ' H1
ét(OK0,S̃0

,Z`(n)) and (T`(JS)(−n)Γ)∨ ' H2
ét(OK0,S̃0

,Z`(n)).

Finally, Lemma 2.3.10 implies that

Fit(((Z`(−n)Γ)∨)∧) = Fit((Z`(−n)Γ)∨).

Combining all these calculations we can write (4.7) as

FitZ`[G](H
1
ét(OK0,S̃0

,Z`(n))) · δT0(1− n) ·ΘS0(qn−1)

= δT0(1− n) · FitZ`[G](H
2
ét(OK0,S̃0

,Z`(n))).
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As H1
ét(OK0,S̃0

,Z`(n)) is a cyclic Z`[G]-module, Lemma 2.3.10 allows us rewrite this as

AnnZ`[G](H
1
ét(OK0,S̃0

,Z`(n))) · δT0(1− n) ·ΘS0(qn−1)

= δT0(1− n) · FitZ`[G](H
2
ét(OK0,S̃0

,Z`(n)))

We’ve seen that δT0(1 − n) generates the Fitting ideal of a torsion finitely

generated Z`[G]-module with projective dimension 1, and so Proposition 2.3.6 implies

that it is not a zero-divisor in Z`[G]. We are therefore entitled to cancel the δT0(1− n)

term from both sides of the equation. This results in the equality

AnnZ`[G](H
1
ét(OK0,S̃0

,Z`(n))) ·ΘS0(qn−1)

= FitZ`[G](H
2
ét(OK0,S̃0

,Z`(n)))

and this concludes the proof.

�



Appendix A

Some Cohomological Calculations

In this Appendix, we introduce the Tate cohomology groups of a module over

a finite group. The notion of cohomological triviality, due to Nakayama and Tate, is

defined. We then develop a criterion for when certain étale cohomology groups are

cohomologically trivial. This condition has often played a role in the calculation of Fitting

ideals and this criterion should be useful in trying to remove some of the conditions in

the main theorems of [6], [7].

A.1 Group cohomology

Let G be a finite group. The Tate cohomology of G is a sequence of functors

Ĥi(G,−), for n ∈ Z, from the category of Z[G]-modules to the category of abelian groups.

They satisfy the usual properties that we expect from a cohomology theory. For example,

if

0→ A→ B → C → 0

is a short exact sequence of Z[G]-modules, then there is a long exact sequence in coho-

mology

. . .→ Ĥi(G,C)→ Ĥi+1(G,A)→ Ĥi+1(G,B)→ Ĥi+1(G,C)→ . . . .

Remark A.1.1. For n = −1, 0, these cohomology groups are especially concrete. Let

NG =
∑

g∈G g be the so-called norm element of Z[G]. We can think of NG as a map

NG : M →M defined by m 7→ NG ·m. If M is a Z[G]-module, then

Ĥ0(G,M) = MG/NG ·M
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and

Ĥ−1(G,M) = ker(NG)/IG ·M.

A full development of the theory of group cohomology can be found in chapter

4 of [2].

A.2 Cohomological triviality

We would like to have some tools in place to study the Galois-module structure

of certain étale cohomology groups. We will be particularly interested in the case where

the Tate cohomology groups satisfy an especially strong vanishing condition.

Definition A.2.1. If M is a G-module, we say that M is G-cohomologically trivial, or

G-c.t., if Ĥ i(H,M) = 0 for all i ∈ Z and for all subgroups H ⊆ G.

Proposition A.2.2 (Theorem 9 in Chapter 4 of [2]). Let G be a finite group. Let M be

a finitely generated Z`[G]-module. Then M is G-c.t. if and only if pdZ`[G](M) ≤ 1.

Let Λ = Z`[[T ]] be the 1-variable Iwasawa-algebra with coefficients in Z`.

Proposition A.2.3 (Proposition 2.2 in [12]). Let M be a finitely generated Λ[G]-module.

Then pdΛ[G](M) ≤ 1 if and only if the following two conditions are satisfied

1. pdΛ(M) ≤ 1,

2. M is G-c.t.

Proposition A.2.4 (Lemma 2.3 in [12]). Let M be a Λ-module. Then pdΛ(M) ≤ 1 if

and only if M has no finite Λ-submodules.

A.3 Tate cohomology of certain étale cohomology groups

Let K/k be an abelian extension of number fields or characteristic p function

fields with Galois group G and let S be a finite G-invariant set of primes of K containing

all the primes which ramify in K/k. Also, let ` be a prime different from the characteristic

of k and let n ∈ Z. If K/k are number fields, then we assume that n is even. We will

write K∞, k∞ for the cyclotomic Z`-extensions of K and k i.e., K∞ = K(µ`∞)∆ where

∆ ⊂ G(K(µ`∞)/K) is the maximal subgroup of order prime to ` and similarly for k∞.

We set ΓK = G(K∞/K), Γk = G(k∞/k) and Γ̃K = G(K(µ`∞)/K).
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We set G′ = G(K∞/k∞). Observe that G′ is naturally identified with the group

G(K/K ∩ k∞) ⊂ G. As Γk is pro-cyclic, there is a splitting of the sequence

0→ G′ → G(K∞/k)→ Γk → 0

and therefore we can write G(K∞/k) ' Γk×G′. This lets us identify the pro-finite group

ring Z`[[G(K∞/k)]] with Z`[[Γk]][G′] ' Λ[G′] and use the commutative algebra from the

previous section in our study of Z`[[G(K∞/k)]]-modules. If we define IΓK ⊂ Λ[G′] to be

the closure of the ideal 〈1− g | g ∈ ΓK〉, then we clearly have that Λ[G′]/IΓK ' Z`[G].

Recall that G(`) has been defined to be the `-Sylow subgroup of G.

Lemma A.3.1. Let G be a finite group and let M be a finite Z`[G]-module. Then M is

G-c.t. if and only if M is G(`)-c.t.

Proof. If M is G-c.t., then it is obvious that M is G(`)-c.t. as every subgroup of G(`) is a

subgroup of G. Conversely, if M is G(`)-c.t., then we use that for any subgroup H ⊂ G,

we have Ĥ i(H,M) ' Ĥ i(H(`),M), see Corollary 3 in Chapter 4, §5 of [2]. If the latter

is always zero, then so is the former.

From now on, we fix n ≥ 2, and ` prime. If K, k are function fields, then we as-

sume that ` 6= p. We will be studying the Galois module structure of H1
ét(OK,S ,Z`(n))tors

and the following description of this group will be very useful.

Proposition A.3.2. There is an isomorphism

H1
ét(OK,S ,Z`(n))tors ' (Q`/Z`)(n)Γ̃K .

Proof. For the number field case see Lemma 6.9 in [6]. For the function field case see

Remark 5.15 in [7] and observe that G(K(µ∞)/K(µ`∞)) automatically acts trivially on

(Q`/Z`)(n).

In what follows we will simplify our notation by settingM = H1
ét(OK,S ,Z`(n))tors.

Proposition A.3.3. |M | = max{`a | G(K(µ`a)/K) has exponent dividing n}.

Proof. It is easy to see that

|M | = max{`a | c`(σ)n ≡ 1 (mod `a) for all σ ∈ Γ̃K}.
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Of course, we have an injection G(K(µ`a)/K) ↪→ (Z/`aZ)× given by the cyclotomic

character modulo `a. This allows us to say that the right hand side is the same as

max{`a | G(K(µ`a)/K) has exponent dividing n}

as claimed.

Initially, we make the following assumption

Assumption A.3.4. If ` is odd, we assume that µ` ⊂ K∞. If ` = 2, then we assume

that µ4 ⊂ K∞.

Observe that, under this assumption, the previous proposition implies that

M 6= 0.

Proposition A.3.5. M ' (Q`/Z`)(−n)ΓK ' Z`(−n)ΓK .

Proof. Under the assumption, we have that Γ̃K = ΓK and so the first isomorphism

follows from Proposition 3.3.1. Next, Lemma 2.2.3 applied to the short exact sequence

0→ Z`(−n)→ Q`(−n)→ (Q`/Z`)(−n)→ 0

produces an exact sequence

Q`(−n)ΓK → (Q`/Z`)(−n)ΓK → Z`(−n)ΓK → Q`(−n)ΓK .

The second isomorphism follows upon observing that both Q`(−n)ΓK and Q`(−n)ΓK are

trivial.

Theorem A.3.6. Under Assumption A.3.4 the following are equivalent

1. M is G-c.t.

2. M is G′-c.t.

3. ` - |G′|

Proof. Both (1) and (3) are evidently stronger conditions than (2) so it will suffice

to prove that (2) implies both of (1) and (3). From now on we therefore make the

assumption that M is G′-c.t.
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We will prove that (2) implies (3) by considering Z`(−n) as a module over

Λ[G′]. It is easy to see that Z`(−n) has no finite Λ-submodules and so, by Propositions

A.2.3 and A.2.4, we get that pdΛ[G′](Z`(−n)) = 1. If

0→ P1 → P0 → Z`(−n)→ 0

is a projective resolution, then Lemma 2.2.3 produces an exact sequence of Λ[G′]/IΓK '
Z`[G]-modules

Z`(−n)ΓK → (P1)ΓK → (P0)ΓK →M → 0.

Since Z`(−n)ΓK is finite, Proposition 2.2.5 implies that Z`(−n)ΓK is a finite

submodule of Z`(−n). The only such submodule is trivial and so we have a projective

resolution of M

0→ (P1)ΓK → (P0)ΓK →M → 0.

This shows that pdZ`[G](M) = 1 and therefore M is G-c.t. by Proposition A.2.2. This

establishes that (2) and (3) are equivalent.

To prove that (2) implies (1) we have to consider the cases when ` is even or

odd seperately. We set H = G(K∞/k∞(µ`)) ⊂ G′ if ` is odd and H = G(K∞/k∞(µ4))

if ` = 2. Observe that, in either case, H acts trivially on M since c`(H) = 1.

If ` is odd, then since (|G(k∞(µ`)/k∞)|, `) = 1, we get that H(`) = G′(`) and

therefore G′(`) acts trivially on M . Since M 6= 0, the only way that Ĥ0(G′(`),M) can be

zero is if G(`) is trivial i.e., if ` - |G′|.
If ` = 2, then we no can no longer say that (|G(k∞(µ4)/k∞)|, `) = 1 so we need

a slightly different argument. Observe though that the above argument shows that H(2)

must be trivial. I claim that in fact, µ4 ⊆ k∞. If not then, since H(2) = 0, we have a

splitting G′ ' H ×G(k∞(µ4)/k∞). But it is easy to calculate that

Ĥ0(G(k∞(µ4)/k∞),M) =

 µ2 if n is odd

M/2M if n is even

In either case we would get a contradiction with G′-cohomological triviality of M and

therefore we must have µ4 ⊆ k∞ and H = G′. Since we have already observed that H(2)

is trivial this finishes the proof.

Having proven this theorem we can dispense with our assumption and prove

the following concrete criterion for cohomological triviality.
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Theorem A.3.7. Let K/k be an arbitrary abelian extension of global fields with Galois

group G.

1. If ` is odd, then H1
ét(OK,S ,Z`(n)) is G-c.t. if and only if

` - (|H1
ét(OK,S ,Z`(n))|, [K : K ∩ k∞]).

2. If n is odd and µ4 6⊆ K∞, then H1
ét(OK,S ,Z2(n)) is G-c.t. if and only if 2 - |G|.

Otherwise H1
ét(OK,S ,Z2(n)) is G-c.t. if and only if 2 - [K : K ∩ k∞].

Proof. As above, we will write M = H1
ét(OK,S ,Z`(n))tors. The theorem is trivial if M = 0

and so we assume that this is not the case.

1. Let ` be an odd prime. Let K̃ = K(µ`), let ∆ = G(K̃/K) and let G̃ =

G(K̃/k). As we are assuming that M 6= 0, Proposition A.3.3 will allow us to prove

that in fact there is an isomorphism of Z`[G]-modules M ' H1
ét(OK̃,S ,Z`(n)). Since

(|∆|, `) = 1 we have that G(`) ' G̃(`) and so M is G-c.t. if and only if H1
ét(OK̃,S ,Z`(n))

is G̃-c.t. Of course, K̃ satisfies Assumption A.3.4 and so Theorem A.3.6 implies that

this is so if and only if ` - [K̃∞ : k∞]. As ([K̃∞ : K∞], `) = 1 this will hold if and only

if ` - [K∞ : k∞]. Finally, Galois theory tells us that [K∞ : k∞] = [K : K ∩ k∞] and this

finishes the proof in this case.

2. Let ` = 2. First, suppose that µ4 6⊆ K∞ and that n is odd. Since the

exponent of K(µ2m/K) is a power of 2 if m > 1 and n is odd, Proposition A.3.3 says

that M ' µ2. The action of G on M is therefore trivial and we have that M is G-c.t. if

and only if 2 - |G|.
If we suppose that µ4 ⊆ K∞ then either µ4 ⊆ K or µ4 ⊆ k∞. If µ4 ⊆ K, then

again K satisfies Assumption A.3.4 and therefore M is G-c.t. if and only if 2 - [K :

K∩k∞]. If µ4 ⊆ k∞, then clearly G(K∞/k∞) acts trivially on M and we conclude again

that M is G-c.t. if and only 2 - [K : K ∩ k∞].

Finally suppose that µ4 6⊆ K∞ but that n is even. If we set G′ = G(K∞/k∞) '
G(K/K ∩ k∞), then Galois theory gives an isomorphism G′ ' G(K∞(µ4)/k∞(µ4)) and

so G′ acts trivially on M . This gives us one direction: we’ve shown that if M is G-c.t.,

then 2 - |G′| = [K : K ∩ k∞]. Conversely, suppose that 2 - |G′|. As in Proposition A.3.6

we therefore have that Z`(n) has pdΛ[G′] = 1. Write

0→ P1 → P0 → Z`(n)→ 0.
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The key observation now is that Propositon A.3.5 still holds for M . This is

because Γ̃K = ΓK ×〈j〉 where j is a generator for G(K(µ4)/K). Since j has order 2, the

group 〈j〉 acts trivially on Z`(n) for n even and so Z`(n)
Γ̃K

= Z`(n)ΓK . From here we

can mimic the proof of Proposition A.3.6 to produce a sequence

0→ (P1)ΓK → (P0)ΓK → Z`(n)ΓK → 0.

Finally Proposition A.2.2 applies to say that M is G-c.t.

We can make some further calculations to deduce the following auxiliary the-

orem relating cohomological triviality of H1
ét(OK,S ,Z`(n)) to cohomological triviality of

H2
ét(OK,S [1/`],Z`(n)) in the number field setting.

Theorem A.3.8. Keep the notations as above but assume that K, k are number fields.

Suppose that S contains all the primes which ramify in K/k. Then H1
ét(OK,S ,Z`(n)) is

G-c.t. if and only if H2
ét(OK,S ,Z`(n)) is G-c.t.

Proof. By Corollary 2.3 in [8] we have that

H1
ét(OK,S ,Z`(n)) = H1

ét(K,Z`(n)).

and by Corollary 2.11 in [8] we have thatH1
ét(K,Z`(n)) isG-c.t. if and only ifH2

ét(K,Z`(n))

is G-c.t. Finally by Remark 3.4 in [12] we have an exact sequence

0→ H2
ét(OK,S Z` (n))→ H2

ét(K,Z`(n))→
⊕

w 6∈S∪S`

H1
ét(κ(w),Z`(n− 1))→ 0

where S` denotes the set of primes of OK which lie above `.

Let Sk be the set of primes of k which lie below the primes in S. Then we will

show for each v 6∈ Sk and not lying above ` that⊕
w|v

H1
ét(κ(w),Z`(n− 1))

is G-c.t. We assume this for the moment and finish the proof. This will imply, via the

long exact sequence in group cohomology, that H2
ét(OK,S Z` (n)) is G-c.t. if and only if

H2
ét(K,Z`(n)) is G-c.t.

We therefore have the following sequence of implications: H1
ét(OK,S ,Z`(n)) is

G-c.t. if and only if H1
ét(K,Z`(n)) is G-c.t. if and only if H2

ét(K,Z`(n)) is G-c.t. if and

only if H2
ét(OK,S [1/`],Z`(n)) is G-c.t. This concludes the argument.
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Now to prove that ⊕
w|v

H1
ét(κ(w),Z`(n− 1))

is G-c.t. If w0 is a choice of one of the primes lying above v, then we can write⊕
w|v

κ(w) = κ(w0)⊗Z[Gv ] Z[G]

and so we have⊕
w|v

H1
ét(κ(w),Z`(n− 1)) = H1

ét(κ(w0),Z`(n− 1))⊗Z[Gv ] Z[G].

By Shapiro’s Lemma, Proposition 2 in Chapter 4 of [2] we have that

H1
ét(κ(w0),Z`(n− 1))⊗Z[Gv ] Z[G]

is G-c.t. if and only if H1
ét(κ(w0),Z`(n− 1)) is Gv-c.t. By Remark 3.4 in [12] again, we

have that

H1
ét(κ(w0),Z`(n)) ' (Q`/Z`)(n− 1)Gκ(w0)

where Gκ(w0) is the absolute Galois group of the finite field κ(w0).

We can think of the abelian group (Q`/Z`)(n − 1)Gκ(w0) as the group of roots

of unity of `-power order in the degree n − 1 extension of κ(w0). We will refer to this

group as W (n−1) and to the degree n−1 extension of κ(w0) as κn−1. Note that we can

write (Q`/Z`)(n− 1)Gκ(w0) as a G(κn−1/κ(v))-module by writing (Q`/Z`)(n− 1)Gκ(w0) '
W (n − 1)⊗n−1. The Gv-module structure on (Q`/Z`)(n − 1)Gκ(w0) is induced from this

one via restriction. Note that Gv ⊂ G(κn−1/κ(v)) because v is unramified.

Now we observe that κ×n−1 is G(κn−1/κ(v))-c.t. by Hilbert’s Theorem 90 and

the theory of the Herbrand quotient (see Chapter 4 of [2]). Since W (n−1) is the `-Sylow

subgroup of κ×n−1 it too is G(κn−1/κ(v))-c.t. It follows from Proposition 1 in Chapter

IX of [13] that (Q`/Z`)(n − 1)Gκ(w0) is G(κn−1/κ(v))-c.t. as well. Restricting to Gv we

conclude that (Q`/Z`)(n− 1)Gκ(w0) is Gv-c.t.
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