Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Half-calcified calmodulin promotes basal activity and inactivation of the L-type calcium channel CaV1.2

Abstract

The L-type Ca2+ channel CaV1.2 controls gene expression, cardiac contraction, and neuronal activity. Calmodulin (CaM) governs CaV1.2 open probability (Po) and Ca2+-dependent inactivation (CDI) but the mechanisms remain unclear. Here, we present electrophysiological data that identify a half Ca2+-saturated CaM species (Ca2/CaM) with Ca2+ bound solely at the third and fourth EF-hands (EF3 and EF4) under resting Ca2+ concentrations (50-100 nM) that constitutively preassociates with CaV1.2 to promote Po and CDI. We also present an NMR structure of a complex between the CaV1.2 IQ motif (residues 1644-1665) and Ca2/CaM12', a calmodulin mutant in which Ca2+ binding to EF1 and EF2 is completely disabled. We found that the CaM12' N-lobe does not interact with the IQ motif. The CaM12' C-lobe bound two Ca2+ ions and formed close contacts with IQ residues I1654 and Y1657. I1654A and Y1657D mutations impaired CaM binding, CDI, and Po, as did disabling Ca2+ binding to EF3 and EF4 in the CaM34 mutant when compared to WT CaM. Accordingly, a previously unappreciated Ca2/CaM species promotes CaV1.2 Po and CDI, identifying Ca2/CaM as an important mediator of Ca signaling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View