Skip to main content
eScholarship
Open Access Publications from the University of California

Antiviral Effect of Antimicrobial Peptoid TM9 and Murine Model of Respiratory Coronavirus Infection

Abstract

New antiviral agents are essential to improving treatment and control of SARS-CoV-2 infections that can lead to the disease COVID-19. Antimicrobial peptoids are sequence-specific oligo-N-substituted glycine peptidomimetics that emulate the structure and function of natural antimicrobial peptides but are resistant to proteases. We demonstrate antiviral activity of a new peptoid (TM9) against the coronavirus, murine hepatitis virus (MHV), as a closely related model for the structure and antiviral susceptibility profile of SARS-CoV-2. This peptoid mimics the human cathelicidin LL-37, which has also been shown to have antimicrobial and antiviral activity. In this study, TM9 was effective against three murine coronavirus strains, demonstrating that the therapeutic window is large enough to allow the use of TM9 for treatment. All three isolates of MHV generated infection in mice after 15 min of exposure by aerosol using the Madison aerosol chamber, and all three viral strains could be isolated from the lungs throughout the 5-day observation period post-infection, with the peak titers on day 2. MHV-A59 and MHV-A59-GFP were also isolated from the liver, heart, spleen, olfactory bulbs, and brain. These data demonstrate that MHV serves as a valuable natural murine model of coronavirus pathogenesis in multiple organs, including the brain.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View