Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes

Abstract

Electrically driven light-emitting devices provide highly energy-efficient lighting at visible wavelengths, and they have transformed photonic and electronic lighting applications. Efficient infrared light-emitting devices, however, have been challenging because band gap emission from semiconductors becomes inefficient in the mid-infrared to far-infrared spectral range. Here we investigate infrared light-emitting devices (IRLEDs) based on Luttinger liquid (LL) plasmons in one-dimensional (1D) metallic carbon nanotubes. Elementary excitations in LL are characterized by collective charge and spin excitations, i.e., plasmons and spinons. Consequently, electrons injected into the nanotubes transform efficiently into LL plasmons, a hybrid excitation of electromagnetic fields and electrons. We design nanoantennas coupled to the carbon nanotube to radiate LL plasmons into the far field. LL-based IRLEDs can be designed to selectively emit at wavelengths across the far- and mid-infrared spectra. An electrical-to-optical power conversion efficiency up to 3.2% may be achieved. Such efficient and narrowband LL-based IRLEDs can enable novel infrared nanophotonic applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View